Metamath Proof Explorer


Theorem resstopn

Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses resstopn.1 H=K𝑠A
resstopn.2 J=TopOpenK
Assertion resstopn J𝑡A=TopOpenH

Proof

Step Hyp Ref Expression
1 resstopn.1 H=K𝑠A
2 resstopn.2 J=TopOpenK
3 fvex TopSetKV
4 fvex BaseKV
5 restco TopSetKVBaseKVAVTopSetK𝑡BaseK𝑡A=TopSetK𝑡BaseKA
6 3 4 5 mp3an12 AVTopSetK𝑡BaseK𝑡A=TopSetK𝑡BaseKA
7 eqid TopSetK=TopSetK
8 1 7 resstset AVTopSetK=TopSetH
9 incom BaseKA=ABaseK
10 eqid BaseK=BaseK
11 1 10 ressbas AVABaseK=BaseH
12 9 11 eqtrid AVBaseKA=BaseH
13 8 12 oveq12d AVTopSetK𝑡BaseKA=TopSetH𝑡BaseH
14 6 13 eqtrd AVTopSetK𝑡BaseK𝑡A=TopSetH𝑡BaseH
15 10 7 topnval TopSetK𝑡BaseK=TopOpenK
16 15 2 eqtr4i TopSetK𝑡BaseK=J
17 16 oveq1i TopSetK𝑡BaseK𝑡A=J𝑡A
18 eqid BaseH=BaseH
19 eqid TopSetH=TopSetH
20 18 19 topnval TopSetH𝑡BaseH=TopOpenH
21 14 17 20 3eqtr3g AVJ𝑡A=TopOpenH
22 simpr JVAVAV
23 restfn 𝑡FnV×V
24 23 fndmi dom𝑡=V×V
25 24 ndmov ¬JVAVJ𝑡A=
26 22 25 nsyl5 ¬AVJ𝑡A=
27 reldmress Reldom𝑠
28 27 ovprc2 ¬AVK𝑠A=
29 1 28 eqtrid ¬AVH=
30 29 fveq2d ¬AVTopSetH=TopSet
31 tsetid TopSet=SlotTopSetndx
32 31 str0 =TopSet
33 30 32 eqtr4di ¬AVTopSetH=
34 33 oveq1d ¬AVTopSetH𝑡BaseH=𝑡BaseH
35 0rest 𝑡BaseH=
36 34 20 35 3eqtr3g ¬AVTopOpenH=
37 26 36 eqtr4d ¬AVJ𝑡A=TopOpenH
38 21 37 pm2.61i J𝑡A=TopOpenH