Metamath Proof Explorer


Theorem resstps

Description: A restricted topological space is a topological space. Note that this theorem would not be true if TopSp was defined directly in terms of the TopSet slot instead of the TopOpen derived function. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resstps KTopSpAVK𝑠ATopSp

Proof

Step Hyp Ref Expression
1 eqid BaseK=BaseK
2 eqid TopOpenK=TopOpenK
3 1 2 istps KTopSpTopOpenKTopOnBaseK
4 resttopon2 TopOpenKTopOnBaseKAVTopOpenK𝑡ATopOnABaseK
5 3 4 sylanb KTopSpAVTopOpenK𝑡ATopOnABaseK
6 eqid K𝑠A=K𝑠A
7 6 1 ressbas AVABaseK=BaseK𝑠A
8 7 adantl KTopSpAVABaseK=BaseK𝑠A
9 8 fveq2d KTopSpAVTopOnABaseK=TopOnBaseK𝑠A
10 5 9 eleqtrd KTopSpAVTopOpenK𝑡ATopOnBaseK𝑠A
11 eqid BaseK𝑠A=BaseK𝑠A
12 6 2 resstopn TopOpenK𝑡A=TopOpenK𝑠A
13 11 12 istps K𝑠ATopSpTopOpenK𝑡ATopOnBaseK𝑠A
14 10 13 sylibr KTopSpAVK𝑠ATopSp