Metamath Proof Explorer


Theorem resttopon2

Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion resttopon2 JTopOnXAVJ𝑡ATopOnAX

Proof

Step Hyp Ref Expression
1 topontop JTopOnXJTop
2 resttop JTopAVJ𝑡ATop
3 1 2 sylan JTopOnXAVJ𝑡ATop
4 toponuni JTopOnXX=J
5 4 ineq2d JTopOnXAX=AJ
6 5 adantr JTopOnXAVAX=AJ
7 eqid J=J
8 7 restuni2 JTopAVAJ=J𝑡A
9 1 8 sylan JTopOnXAVAJ=J𝑡A
10 6 9 eqtrd JTopOnXAVAX=J𝑡A
11 istopon J𝑡ATopOnAXJ𝑡ATopAX=J𝑡A
12 3 10 11 sylanbrc JTopOnXAVJ𝑡ATopOnAX