Metamath Proof Explorer


Theorem rest0

Description: The subspace topology induced by the topology J on the empty set. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion rest0 J Top J 𝑡 =

Proof

Step Hyp Ref Expression
1 0ex V
2 restval J Top V J 𝑡 = ran x J x
3 1 2 mpan2 J Top J 𝑡 = ran x J x
4 in0 x =
5 1 elsn2 x x =
6 4 5 mpbir x
7 6 a1i J Top x J x
8 7 fmpttd J Top x J x : J
9 8 frnd J Top ran x J x
10 3 9 eqsstrd J Top J 𝑡
11 resttop J Top V J 𝑡 Top
12 1 11 mpan2 J Top J 𝑡 Top
13 0opn J 𝑡 Top J 𝑡
14 12 13 syl J Top J 𝑡
15 14 snssd J Top J 𝑡
16 10 15 eqssd J Top J 𝑡 =