Metamath Proof Explorer


Theorem rest0

Description: The subspace topology induced by the topology J on the empty set. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion rest0 JTopJ𝑡=

Proof

Step Hyp Ref Expression
1 0ex V
2 restval JTopVJ𝑡=ranxJx
3 1 2 mpan2 JTopJ𝑡=ranxJx
4 in0 x=
5 1 elsn2 xx=
6 4 5 mpbir x
7 6 a1i JTopxJx
8 7 fmpttd JTopxJx:J
9 8 frnd JTopranxJx
10 3 9 eqsstrd JTopJ𝑡
11 resttop JTopVJ𝑡Top
12 1 11 mpan2 JTopJ𝑡Top
13 0opn J𝑡TopJ𝑡
14 12 13 syl JTopJ𝑡
15 14 snssd JTopJ𝑡
16 10 15 eqssd JTopJ𝑡=