Metamath Proof Explorer


Theorem restsn

Description: The only subspace topology induced by the topology { (/) } . (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion restsn AV𝑡A=

Proof

Step Hyp Ref Expression
1 sn0top Top
2 elrest TopAVx𝑡Ayx=yA
3 1 2 mpan AVx𝑡Ayx=yA
4 0ex V
5 ineq1 y=yA=A
6 0in A=
7 5 6 eqtrdi y=yA=
8 7 eqeq2d y=x=yAx=
9 4 8 rexsn yx=yAx=
10 velsn xx=
11 9 10 bitr4i yx=yAx
12 3 11 bitrdi AVx𝑡Ax
13 12 eqrdv AV𝑡A=