Metamath Proof Explorer


Theorem restsn2

Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion restsn2 JTopOnXAXJ𝑡A=𝒫A

Proof

Step Hyp Ref Expression
1 snssi AXAX
2 resttopon JTopOnXAXJ𝑡ATopOnA
3 1 2 sylan2 JTopOnXAXJ𝑡ATopOnA
4 topsn J𝑡ATopOnAJ𝑡A=𝒫A
5 3 4 syl JTopOnXAXJ𝑡A=𝒫A