Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restsn2 | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) = ~P { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( A e. X -> { A } C_ X ) |
|
| 2 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ { A } C_ X ) -> ( J |`t { A } ) e. ( TopOn ` { A } ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) e. ( TopOn ` { A } ) ) |
| 4 | topsn | |- ( ( J |`t { A } ) e. ( TopOn ` { A } ) -> ( J |`t { A } ) = ~P { A } ) |
|
| 5 | 3 4 | syl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) = ~P { A } ) |