Step |
Hyp |
Ref |
Expression |
1 |
|
sn0top |
|- { (/) } e. Top |
2 |
|
elrest |
|- ( ( { (/) } e. Top /\ A e. V ) -> ( x e. ( { (/) } |`t A ) <-> E. y e. { (/) } x = ( y i^i A ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. V -> ( x e. ( { (/) } |`t A ) <-> E. y e. { (/) } x = ( y i^i A ) ) ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
|
ineq1 |
|- ( y = (/) -> ( y i^i A ) = ( (/) i^i A ) ) |
6 |
|
0in |
|- ( (/) i^i A ) = (/) |
7 |
5 6
|
eqtrdi |
|- ( y = (/) -> ( y i^i A ) = (/) ) |
8 |
7
|
eqeq2d |
|- ( y = (/) -> ( x = ( y i^i A ) <-> x = (/) ) ) |
9 |
4 8
|
rexsn |
|- ( E. y e. { (/) } x = ( y i^i A ) <-> x = (/) ) |
10 |
|
velsn |
|- ( x e. { (/) } <-> x = (/) ) |
11 |
9 10
|
bitr4i |
|- ( E. y e. { (/) } x = ( y i^i A ) <-> x e. { (/) } ) |
12 |
3 11
|
bitrdi |
|- ( A e. V -> ( x e. ( { (/) } |`t A ) <-> x e. { (/) } ) ) |
13 |
12
|
eqrdv |
|- ( A e. V -> ( { (/) } |`t A ) = { (/) } ) |