| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sn0top |
⊢ { ∅ } ∈ Top |
| 2 |
|
elrest |
⊢ ( ( { ∅ } ∈ Top ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ∈ ( { ∅ } ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( { ∅ } ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
|
ineq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) ) |
| 6 |
|
0in |
⊢ ( ∅ ∩ 𝐴 ) = ∅ |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑦 ∩ 𝐴 ) = ∅ ) |
| 8 |
7
|
eqeq2d |
⊢ ( 𝑦 = ∅ → ( 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 = ∅ ) ) |
| 9 |
4 8
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 = ∅ ) |
| 10 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
| 11 |
9 10
|
bitr4i |
⊢ ( ∃ 𝑦 ∈ { ∅ } 𝑥 = ( 𝑦 ∩ 𝐴 ) ↔ 𝑥 ∈ { ∅ } ) |
| 12 |
3 11
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( { ∅ } ↾t 𝐴 ) ↔ 𝑥 ∈ { ∅ } ) ) |
| 13 |
12
|
eqrdv |
⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } ↾t 𝐴 ) = { ∅ } ) |