Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
restval |
⊢ ( ( 𝐽 ∈ Top ∧ ∅ ∈ V ) → ( 𝐽 ↾t ∅ ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) ) |
4 |
|
in0 |
⊢ ( 𝑥 ∩ ∅ ) = ∅ |
5 |
1
|
elsn2 |
⊢ ( ( 𝑥 ∩ ∅ ) ∈ { ∅ } ↔ ( 𝑥 ∩ ∅ ) = ∅ ) |
6 |
4 5
|
mpbir |
⊢ ( 𝑥 ∩ ∅ ) ∈ { ∅ } |
7 |
6
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ) → ( 𝑥 ∩ ∅ ) ∈ { ∅ } ) |
8 |
7
|
fmpttd |
⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) : 𝐽 ⟶ { ∅ } ) |
9 |
8
|
frnd |
⊢ ( 𝐽 ∈ Top → ran ( 𝑥 ∈ 𝐽 ↦ ( 𝑥 ∩ ∅ ) ) ⊆ { ∅ } ) |
10 |
3 9
|
eqsstrd |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) ⊆ { ∅ } ) |
11 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ ∅ ∈ V ) → ( 𝐽 ↾t ∅ ) ∈ Top ) |
12 |
1 11
|
mpan2 |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) ∈ Top ) |
13 |
|
0opn |
⊢ ( ( 𝐽 ↾t ∅ ) ∈ Top → ∅ ∈ ( 𝐽 ↾t ∅ ) ) |
14 |
12 13
|
syl |
⊢ ( 𝐽 ∈ Top → ∅ ∈ ( 𝐽 ↾t ∅ ) ) |
15 |
14
|
snssd |
⊢ ( 𝐽 ∈ Top → { ∅ } ⊆ ( 𝐽 ↾t ∅ ) ) |
16 |
10 15
|
eqssd |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ↾t ∅ ) = { ∅ } ) |