Metamath Proof Explorer


Theorem restuni2

Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis restin.1 X=J
Assertion restuni2 JTopAVAX=J𝑡A

Proof

Step Hyp Ref Expression
1 restin.1 X=J
2 simpl JTopAVJTop
3 inss2 AXX
4 1 restuni JTopAXXAX=J𝑡AX
5 2 3 4 sylancl JTopAVAX=J𝑡AX
6 1 restin JTopAVJ𝑡A=J𝑡AX
7 6 unieqd JTopAVJ𝑡A=J𝑡AX
8 5 7 eqtr4d JTopAVAX=J𝑡A