Metamath Proof Explorer


Theorem restco

Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restco JVAWBXJ𝑡A𝑡B=J𝑡AB

Proof

Step Hyp Ref Expression
1 vex yV
2 1 inex1 yAV
3 ineq1 x=yAxB=yAB
4 inass yAB=yAB
5 3 4 eqtrdi x=yAxB=yAB
6 2 5 abrexco z|xw|yJw=yAz=xB=z|yJz=yAB
7 eqid yJyA=yJyA
8 7 rnmpt ranyJyA=w|yJw=yA
9 8 mpteq1i xranyJyAxB=xw|yJw=yAxB
10 9 rnmpt ranxranyJyAxB=z|xw|yJw=yAz=xB
11 eqid yJyAB=yJyAB
12 11 rnmpt ranyJyAB=z|yJz=yAB
13 6 10 12 3eqtr4i ranxranyJyAxB=ranyJyAB
14 restval JVAWJ𝑡A=ranyJyA
15 14 3adant3 JVAWBXJ𝑡A=ranyJyA
16 15 oveq1d JVAWBXJ𝑡A𝑡B=ranyJyA𝑡B
17 ovex J𝑡AV
18 15 17 eqeltrrdi JVAWBXranyJyAV
19 simp3 JVAWBXBX
20 restval ranyJyAVBXranyJyA𝑡B=ranxranyJyAxB
21 18 19 20 syl2anc JVAWBXranyJyA𝑡B=ranxranyJyAxB
22 16 21 eqtrd JVAWBXJ𝑡A𝑡B=ranxranyJyAxB
23 simp1 JVAWBXJV
24 inex1g AWABV
25 24 3ad2ant2 JVAWBXABV
26 restval JVABVJ𝑡AB=ranyJyAB
27 23 25 26 syl2anc JVAWBXJ𝑡AB=ranyJyAB
28 13 22 27 3eqtr4a JVAWBXJ𝑡A𝑡B=J𝑡AB