Metamath Proof Explorer


Theorem abrexco

Description: Composition of two image maps C ( y ) and B ( w ) . (Contributed by NM, 27-May-2013)

Ref Expression
Hypotheses abrexco.1 BV
abrexco.2 y=BC=D
Assertion abrexco x|yz|wAz=Bx=C=x|wAx=D

Proof

Step Hyp Ref Expression
1 abrexco.1 BV
2 abrexco.2 y=BC=D
3 df-rex yz|wAz=Bx=Cyyz|wAz=Bx=C
4 vex yV
5 eqeq1 z=yz=By=B
6 5 rexbidv z=ywAz=BwAy=B
7 4 6 elab yz|wAz=BwAy=B
8 7 anbi1i yz|wAz=Bx=CwAy=Bx=C
9 r19.41v wAy=Bx=CwAy=Bx=C
10 8 9 bitr4i yz|wAz=Bx=CwAy=Bx=C
11 10 exbii yyz|wAz=Bx=CywAy=Bx=C
12 3 11 bitri yz|wAz=Bx=CywAy=Bx=C
13 rexcom4 wAyy=Bx=CywAy=Bx=C
14 12 13 bitr4i yz|wAz=Bx=CwAyy=Bx=C
15 2 eqeq2d y=Bx=Cx=D
16 1 15 ceqsexv yy=Bx=Cx=D
17 16 rexbii wAyy=Bx=CwAx=D
18 14 17 bitri yz|wAz=Bx=CwAx=D
19 18 abbii x|yz|wAz=Bx=C=x|wAx=D