Step |
Hyp |
Ref |
Expression |
1 |
|
abrexco.1 |
⊢ 𝐵 ∈ V |
2 |
|
abrexco.2 |
⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) |
3 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ) ) |
7 |
4 6
|
elab |
⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ) |
8 |
7
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
9 |
|
r19.41v |
⊢ ( ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
10 |
8 9
|
bitr4i |
⊢ ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
12 |
3 11
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
13 |
|
rexcom4 |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
14 |
12 13
|
bitr4i |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
15 |
2
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 = 𝐶 ↔ 𝑥 = 𝐷 ) ) |
16 |
1 15
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ 𝑥 = 𝐷 ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 ) |
18 |
14 17
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 ) |
19 |
18
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 } = { 𝑥 ∣ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 } |