| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abrexco.1 |
⊢ 𝐵 ∈ V |
| 2 |
|
abrexco.2 |
⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) |
| 3 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ) |
| 4 |
|
vex |
⊢ 𝑦 ∈ V |
| 5 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ) ) |
| 7 |
4 6
|
elab |
⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ) |
| 8 |
7
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 9 |
|
r19.41v |
⊢ ( ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 10 |
8 9
|
bitr4i |
⊢ ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 12 |
3 11
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 13 |
|
rexcom4 |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦 ∃ 𝑤 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 14 |
12 13
|
bitr4i |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ) |
| 15 |
2
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 = 𝐶 ↔ 𝑥 = 𝐷 ) ) |
| 16 |
1 15
|
ceqsexv |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ 𝑥 = 𝐷 ) |
| 17 |
16
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝐴 ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 ) |
| 18 |
14 17
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 ) |
| 19 |
18
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ 𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 } = { 𝑥 ∣ ∃ 𝑤 ∈ 𝐴 𝑥 = 𝐷 } |