Metamath Proof Explorer


Theorem abrexco

Description: Composition of two image maps C ( y ) and B ( w ) . (Contributed by NM, 27-May-2013)

Ref Expression
Hypotheses abrexco.1 𝐵 ∈ V
abrexco.2 ( 𝑦 = 𝐵𝐶 = 𝐷 )
Assertion abrexco { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 } = { 𝑥 ∣ ∃ 𝑤𝐴 𝑥 = 𝐷 }

Proof

Step Hyp Ref Expression
1 abrexco.1 𝐵 ∈ V
2 abrexco.2 ( 𝑦 = 𝐵𝐶 = 𝐷 )
3 df-rex ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) )
4 vex 𝑦 ∈ V
5 eqeq1 ( 𝑧 = 𝑦 → ( 𝑧 = 𝐵𝑦 = 𝐵 ) )
6 5 rexbidv ( 𝑧 = 𝑦 → ( ∃ 𝑤𝐴 𝑧 = 𝐵 ↔ ∃ 𝑤𝐴 𝑦 = 𝐵 ) )
7 4 6 elab ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑤𝐴 𝑦 = 𝐵 )
8 7 anbi1i ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ( ∃ 𝑤𝐴 𝑦 = 𝐵𝑥 = 𝐶 ) )
9 r19.41v ( ∃ 𝑤𝐴 ( 𝑦 = 𝐵𝑥 = 𝐶 ) ↔ ( ∃ 𝑤𝐴 𝑦 = 𝐵𝑥 = 𝐶 ) )
10 8 9 bitr4i ( ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑤𝐴 ( 𝑦 = 𝐵𝑥 = 𝐶 ) )
11 10 exbii ( ∃ 𝑦 ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } ∧ 𝑥 = 𝐶 ) ↔ ∃ 𝑦𝑤𝐴 ( 𝑦 = 𝐵𝑥 = 𝐶 ) )
12 3 11 bitri ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑦𝑤𝐴 ( 𝑦 = 𝐵𝑥 = 𝐶 ) )
13 rexcom4 ( ∃ 𝑤𝐴𝑦 ( 𝑦 = 𝐵𝑥 = 𝐶 ) ↔ ∃ 𝑦𝑤𝐴 ( 𝑦 = 𝐵𝑥 = 𝐶 ) )
14 12 13 bitr4i ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤𝐴𝑦 ( 𝑦 = 𝐵𝑥 = 𝐶 ) )
15 2 eqeq2d ( 𝑦 = 𝐵 → ( 𝑥 = 𝐶𝑥 = 𝐷 ) )
16 1 15 ceqsexv ( ∃ 𝑦 ( 𝑦 = 𝐵𝑥 = 𝐶 ) ↔ 𝑥 = 𝐷 )
17 16 rexbii ( ∃ 𝑤𝐴𝑦 ( 𝑦 = 𝐵𝑥 = 𝐶 ) ↔ ∃ 𝑤𝐴 𝑥 = 𝐷 )
18 14 17 bitri ( ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 ↔ ∃ 𝑤𝐴 𝑥 = 𝐷 )
19 18 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑤𝐴 𝑧 = 𝐵 } 𝑥 = 𝐶 } = { 𝑥 ∣ ∃ 𝑤𝐴 𝑥 = 𝐷 }