Step |
Hyp |
Ref |
Expression |
1 |
|
qqhucn.b |
|- B = ( Base ` R ) |
2 |
|
qqhucn.q |
|- Q = ( CCfld |`s QQ ) |
3 |
|
qqhucn.u |
|- U = ( UnifSt ` Q ) |
4 |
|
qqhucn.v |
|- V = ( metUnif ` ( ( dist ` R ) |` ( B X. B ) ) ) |
5 |
|
qqhucn.z |
|- Z = ( ZMod ` R ) |
6 |
|
qqhucn.1 |
|- ( ph -> R e. NrmRing ) |
7 |
|
qqhucn.2 |
|- ( ph -> R e. DivRing ) |
8 |
|
qqhucn.3 |
|- ( ph -> Z e. NrmMod ) |
9 |
|
qqhucn.4 |
|- ( ph -> ( chr ` R ) = 0 ) |
10 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
11 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
12 |
1 10 11
|
qqhf |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> B ) |
13 |
7 9 12
|
syl2anc |
|- ( ph -> ( QQHom ` R ) : QQ --> B ) |
14 |
|
simpr |
|- ( ( ph /\ e e. RR+ ) -> e e. RR+ ) |
15 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
16 |
6 15
|
syl |
|- ( ph -> R e. NrmGrp ) |
17 |
16
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> R e. NrmGrp ) |
18 |
13
|
ffvelrnda |
|- ( ( ph /\ p e. QQ ) -> ( ( QQHom ` R ) ` p ) e. B ) |
19 |
18
|
adantr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` p ) e. B ) |
20 |
13
|
adantr |
|- ( ( ph /\ p e. QQ ) -> ( QQHom ` R ) : QQ --> B ) |
21 |
20
|
ffvelrnda |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` q ) e. B ) |
22 |
|
eqid |
|- ( norm ` R ) = ( norm ` R ) |
23 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
24 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
25 |
22 1 23 24
|
ngpdsr |
|- ( ( R e. NrmGrp /\ ( ( QQHom ` R ) ` p ) e. B /\ ( ( QQHom ` R ) ` q ) e. B ) -> ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) ) |
26 |
17 19 21 25
|
syl3anc |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) ) |
27 |
|
simpr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> q e. QQ ) |
28 |
|
simplr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> p e. QQ ) |
29 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
30 |
29
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
31 |
|
subrgsubg |
|- ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) ) |
32 |
30 31
|
ax-mp |
|- QQ e. ( SubGrp ` CCfld ) |
33 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
34 |
|
eqid |
|- ( -g ` Q ) = ( -g ` Q ) |
35 |
33 2 34
|
subgsub |
|- ( ( QQ e. ( SubGrp ` CCfld ) /\ q e. QQ /\ p e. QQ ) -> ( q - p ) = ( q ( -g ` Q ) p ) ) |
36 |
32 35
|
mp3an1 |
|- ( ( q e. QQ /\ p e. QQ ) -> ( q - p ) = ( q ( -g ` Q ) p ) ) |
37 |
27 28 36
|
syl2anc |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( q - p ) = ( q ( -g ` Q ) p ) ) |
38 |
37
|
fveq2d |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` ( q - p ) ) = ( ( QQHom ` R ) ` ( q ( -g ` Q ) p ) ) ) |
39 |
1 10 11 2
|
qqhghm |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( Q GrpHom R ) ) |
40 |
7 9 39
|
syl2anc |
|- ( ph -> ( QQHom ` R ) e. ( Q GrpHom R ) ) |
41 |
40
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( QQHom ` R ) e. ( Q GrpHom R ) ) |
42 |
2
|
qrngbas |
|- QQ = ( Base ` Q ) |
43 |
42 34 23
|
ghmsub |
|- ( ( ( QQHom ` R ) e. ( Q GrpHom R ) /\ q e. QQ /\ p e. QQ ) -> ( ( QQHom ` R ) ` ( q ( -g ` Q ) p ) ) = ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) |
44 |
41 27 28 43
|
syl3anc |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` ( q ( -g ` Q ) p ) ) = ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) |
45 |
38 44
|
eqtr2d |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) = ( ( QQHom ` R ) ` ( q - p ) ) ) |
46 |
45
|
fveq2d |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) = ( ( norm ` R ) ` ( ( QQHom ` R ) ` ( q - p ) ) ) ) |
47 |
6 7
|
elind |
|- ( ph -> R e. ( NrmRing i^i DivRing ) ) |
48 |
47
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> R e. ( NrmRing i^i DivRing ) ) |
49 |
8
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> Z e. NrmMod ) |
50 |
9
|
ad2antrr |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( chr ` R ) = 0 ) |
51 |
|
qsubcl |
|- ( ( q e. QQ /\ p e. QQ ) -> ( q - p ) e. QQ ) |
52 |
27 28 51
|
syl2anc |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( q - p ) e. QQ ) |
53 |
22 5
|
qqhnm |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( q - p ) e. QQ ) -> ( ( norm ` R ) ` ( ( QQHom ` R ) ` ( q - p ) ) ) = ( abs ` ( q - p ) ) ) |
54 |
48 49 50 52 53
|
syl31anc |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( QQHom ` R ) ` ( q - p ) ) ) = ( abs ` ( q - p ) ) ) |
55 |
26 46 54
|
3eqtrd |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( abs ` ( q - p ) ) ) |
56 |
19 21
|
ovresd |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) = ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) ) |
57 |
|
qsscn |
|- QQ C_ CC |
58 |
57 28
|
sselid |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> p e. CC ) |
59 |
57 27
|
sselid |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> q e. CC ) |
60 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
61 |
60
|
cnmetdval |
|- ( ( p e. CC /\ q e. CC ) -> ( p ( abs o. - ) q ) = ( abs ` ( p - q ) ) ) |
62 |
58 59 61
|
syl2anc |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( abs o. - ) q ) = ( abs ` ( p - q ) ) ) |
63 |
28 27
|
ovresd |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( p ( abs o. - ) q ) ) |
64 |
59 58
|
abssubd |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( abs ` ( q - p ) ) = ( abs ` ( p - q ) ) ) |
65 |
62 63 64
|
3eqtr4d |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( abs ` ( q - p ) ) ) |
66 |
55 56 65
|
3eqtr4rd |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) ) |
67 |
66
|
breq1d |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e <-> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
68 |
67
|
biimpd |
|- ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
69 |
68
|
ralrimiva |
|- ( ( ph /\ p e. QQ ) -> A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
70 |
69
|
ralrimiva |
|- ( ph -> A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
71 |
70
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
72 |
|
breq2 |
|- ( d = e -> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d <-> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e ) ) |
73 |
72
|
imbi1d |
|- ( d = e -> ( ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) <-> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) ) |
74 |
73
|
2ralbidv |
|- ( d = e -> ( A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) <-> A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) ) |
75 |
74
|
rspcev |
|- ( ( e e. RR+ /\ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) -> E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
76 |
14 71 75
|
syl2anc |
|- ( ( ph /\ e e. RR+ ) -> E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
77 |
76
|
ralrimiva |
|- ( ph -> A. e e. RR+ E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) |
78 |
|
eqid |
|- ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) |
79 |
|
0z |
|- 0 e. ZZ |
80 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
81 |
|
ne0i |
|- ( 0 e. QQ -> QQ =/= (/) ) |
82 |
79 80 81
|
mp2b |
|- QQ =/= (/) |
83 |
82
|
a1i |
|- ( ph -> QQ =/= (/) ) |
84 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
85 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
86 |
1 85
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
87 |
|
ne0i |
|- ( ( 1r ` R ) e. B -> B =/= (/) ) |
88 |
7 84 86 87
|
4syl |
|- ( ph -> B =/= (/) ) |
89 |
|
cnfldxms |
|- CCfld e. *MetSp |
90 |
|
qex |
|- QQ e. _V |
91 |
|
ressxms |
|- ( ( CCfld e. *MetSp /\ QQ e. _V ) -> ( CCfld |`s QQ ) e. *MetSp ) |
92 |
89 90 91
|
mp2an |
|- ( CCfld |`s QQ ) e. *MetSp |
93 |
2 92
|
eqeltri |
|- Q e. *MetSp |
94 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
95 |
2 94
|
ressds |
|- ( QQ e. _V -> ( abs o. - ) = ( dist ` Q ) ) |
96 |
90 95
|
ax-mp |
|- ( abs o. - ) = ( dist ` Q ) |
97 |
42 96
|
xmsxmet2 |
|- ( Q e. *MetSp -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) ) |
98 |
93 97
|
mp1i |
|- ( ph -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) ) |
99 |
|
xmetpsmet |
|- ( ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( PsMet ` QQ ) ) |
100 |
98 99
|
syl |
|- ( ph -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( PsMet ` QQ ) ) |
101 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
102 |
1 24
|
xmsxmet2 |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( B X. B ) ) e. ( *Met ` B ) ) |
103 |
6 15 101 102
|
4syl |
|- ( ph -> ( ( dist ` R ) |` ( B X. B ) ) e. ( *Met ` B ) ) |
104 |
|
xmetpsmet |
|- ( ( ( dist ` R ) |` ( B X. B ) ) e. ( *Met ` B ) -> ( ( dist ` R ) |` ( B X. B ) ) e. ( PsMet ` B ) ) |
105 |
103 104
|
syl |
|- ( ph -> ( ( dist ` R ) |` ( B X. B ) ) e. ( PsMet ` B ) ) |
106 |
78 4 83 88 100 105
|
metucn |
|- ( ph -> ( ( QQHom ` R ) e. ( ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) uCn V ) <-> ( ( QQHom ` R ) : QQ --> B /\ A. e e. RR+ E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) ) ) |
107 |
13 77 106
|
mpbir2and |
|- ( ph -> ( QQHom ` R ) e. ( ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) uCn V ) ) |
108 |
2
|
fveq2i |
|- ( UnifSt ` Q ) = ( UnifSt ` ( CCfld |`s QQ ) ) |
109 |
|
ressuss |
|- ( QQ e. _V -> ( UnifSt ` ( CCfld |`s QQ ) ) = ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) ) ) |
110 |
90 109
|
ax-mp |
|- ( UnifSt ` ( CCfld |`s QQ ) ) = ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) ) |
111 |
3 108 110
|
3eqtri |
|- U = ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) ) |
112 |
|
eqid |
|- ( UnifSt ` CCfld ) = ( UnifSt ` CCfld ) |
113 |
112
|
cnflduss |
|- ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) ) |
114 |
113
|
oveq1i |
|- ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) ) = ( ( metUnif ` ( abs o. - ) ) |`t ( QQ X. QQ ) ) |
115 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
116 |
|
xmetpsmet |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) |
117 |
115 116
|
ax-mp |
|- ( abs o. - ) e. ( PsMet ` CC ) |
118 |
|
restmetu |
|- ( ( QQ =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) /\ QQ C_ CC ) -> ( ( metUnif ` ( abs o. - ) ) |`t ( QQ X. QQ ) ) = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) ) |
119 |
82 117 57 118
|
mp3an |
|- ( ( metUnif ` ( abs o. - ) ) |`t ( QQ X. QQ ) ) = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) |
120 |
111 114 119
|
3eqtri |
|- U = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) |
121 |
120
|
a1i |
|- ( ph -> U = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) ) |
122 |
121
|
oveq1d |
|- ( ph -> ( U uCn V ) = ( ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) uCn V ) ) |
123 |
107 122
|
eleqtrrd |
|- ( ph -> ( QQHom ` R ) e. ( U uCn V ) ) |