Metamath Proof Explorer


Theorem qqhucn

Description: The QQHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018)

Ref Expression
Hypotheses qqhucn.b
|- B = ( Base ` R )
qqhucn.q
|- Q = ( CCfld |`s QQ )
qqhucn.u
|- U = ( UnifSt ` Q )
qqhucn.v
|- V = ( metUnif ` ( ( dist ` R ) |` ( B X. B ) ) )
qqhucn.z
|- Z = ( ZMod ` R )
qqhucn.1
|- ( ph -> R e. NrmRing )
qqhucn.2
|- ( ph -> R e. DivRing )
qqhucn.3
|- ( ph -> Z e. NrmMod )
qqhucn.4
|- ( ph -> ( chr ` R ) = 0 )
Assertion qqhucn
|- ( ph -> ( QQHom ` R ) e. ( U uCn V ) )

Proof

Step Hyp Ref Expression
1 qqhucn.b
 |-  B = ( Base ` R )
2 qqhucn.q
 |-  Q = ( CCfld |`s QQ )
3 qqhucn.u
 |-  U = ( UnifSt ` Q )
4 qqhucn.v
 |-  V = ( metUnif ` ( ( dist ` R ) |` ( B X. B ) ) )
5 qqhucn.z
 |-  Z = ( ZMod ` R )
6 qqhucn.1
 |-  ( ph -> R e. NrmRing )
7 qqhucn.2
 |-  ( ph -> R e. DivRing )
8 qqhucn.3
 |-  ( ph -> Z e. NrmMod )
9 qqhucn.4
 |-  ( ph -> ( chr ` R ) = 0 )
10 eqid
 |-  ( /r ` R ) = ( /r ` R )
11 eqid
 |-  ( ZRHom ` R ) = ( ZRHom ` R )
12 1 10 11 qqhf
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> B )
13 7 9 12 syl2anc
 |-  ( ph -> ( QQHom ` R ) : QQ --> B )
14 simpr
 |-  ( ( ph /\ e e. RR+ ) -> e e. RR+ )
15 nrgngp
 |-  ( R e. NrmRing -> R e. NrmGrp )
16 6 15 syl
 |-  ( ph -> R e. NrmGrp )
17 16 ad2antrr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> R e. NrmGrp )
18 13 ffvelrnda
 |-  ( ( ph /\ p e. QQ ) -> ( ( QQHom ` R ) ` p ) e. B )
19 18 adantr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` p ) e. B )
20 13 adantr
 |-  ( ( ph /\ p e. QQ ) -> ( QQHom ` R ) : QQ --> B )
21 20 ffvelrnda
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` q ) e. B )
22 eqid
 |-  ( norm ` R ) = ( norm ` R )
23 eqid
 |-  ( -g ` R ) = ( -g ` R )
24 eqid
 |-  ( dist ` R ) = ( dist ` R )
25 22 1 23 24 ngpdsr
 |-  ( ( R e. NrmGrp /\ ( ( QQHom ` R ) ` p ) e. B /\ ( ( QQHom ` R ) ` q ) e. B ) -> ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) )
26 17 19 21 25 syl3anc
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) )
27 simpr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> q e. QQ )
28 simplr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> p e. QQ )
29 qsubdrg
 |-  ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing )
30 29 simpli
 |-  QQ e. ( SubRing ` CCfld )
31 subrgsubg
 |-  ( QQ e. ( SubRing ` CCfld ) -> QQ e. ( SubGrp ` CCfld ) )
32 30 31 ax-mp
 |-  QQ e. ( SubGrp ` CCfld )
33 cnfldsub
 |-  - = ( -g ` CCfld )
34 eqid
 |-  ( -g ` Q ) = ( -g ` Q )
35 33 2 34 subgsub
 |-  ( ( QQ e. ( SubGrp ` CCfld ) /\ q e. QQ /\ p e. QQ ) -> ( q - p ) = ( q ( -g ` Q ) p ) )
36 32 35 mp3an1
 |-  ( ( q e. QQ /\ p e. QQ ) -> ( q - p ) = ( q ( -g ` Q ) p ) )
37 27 28 36 syl2anc
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( q - p ) = ( q ( -g ` Q ) p ) )
38 37 fveq2d
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` ( q - p ) ) = ( ( QQHom ` R ) ` ( q ( -g ` Q ) p ) ) )
39 1 10 11 2 qqhghm
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( Q GrpHom R ) )
40 7 9 39 syl2anc
 |-  ( ph -> ( QQHom ` R ) e. ( Q GrpHom R ) )
41 40 ad2antrr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( QQHom ` R ) e. ( Q GrpHom R ) )
42 2 qrngbas
 |-  QQ = ( Base ` Q )
43 42 34 23 ghmsub
 |-  ( ( ( QQHom ` R ) e. ( Q GrpHom R ) /\ q e. QQ /\ p e. QQ ) -> ( ( QQHom ` R ) ` ( q ( -g ` Q ) p ) ) = ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) )
44 41 27 28 43 syl3anc
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( QQHom ` R ) ` ( q ( -g ` Q ) p ) ) = ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) )
45 38 44 eqtr2d
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) = ( ( QQHom ` R ) ` ( q - p ) ) )
46 45 fveq2d
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( ( QQHom ` R ) ` q ) ( -g ` R ) ( ( QQHom ` R ) ` p ) ) ) = ( ( norm ` R ) ` ( ( QQHom ` R ) ` ( q - p ) ) ) )
47 6 7 elind
 |-  ( ph -> R e. ( NrmRing i^i DivRing ) )
48 47 ad2antrr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> R e. ( NrmRing i^i DivRing ) )
49 8 ad2antrr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> Z e. NrmMod )
50 9 ad2antrr
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( chr ` R ) = 0 )
51 qsubcl
 |-  ( ( q e. QQ /\ p e. QQ ) -> ( q - p ) e. QQ )
52 27 28 51 syl2anc
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( q - p ) e. QQ )
53 22 5 qqhnm
 |-  ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( q - p ) e. QQ ) -> ( ( norm ` R ) ` ( ( QQHom ` R ) ` ( q - p ) ) ) = ( abs ` ( q - p ) ) )
54 48 49 50 52 53 syl31anc
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( norm ` R ) ` ( ( QQHom ` R ) ` ( q - p ) ) ) = ( abs ` ( q - p ) ) )
55 26 46 54 3eqtrd
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) = ( abs ` ( q - p ) ) )
56 19 21 ovresd
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) = ( ( ( QQHom ` R ) ` p ) ( dist ` R ) ( ( QQHom ` R ) ` q ) ) )
57 qsscn
 |-  QQ C_ CC
58 57 28 sselid
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> p e. CC )
59 57 27 sselid
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> q e. CC )
60 eqid
 |-  ( abs o. - ) = ( abs o. - )
61 60 cnmetdval
 |-  ( ( p e. CC /\ q e. CC ) -> ( p ( abs o. - ) q ) = ( abs ` ( p - q ) ) )
62 58 59 61 syl2anc
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( abs o. - ) q ) = ( abs ` ( p - q ) ) )
63 28 27 ovresd
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( p ( abs o. - ) q ) )
64 59 58 abssubd
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( abs ` ( q - p ) ) = ( abs ` ( p - q ) ) )
65 62 63 64 3eqtr4d
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( abs ` ( q - p ) ) )
66 55 56 65 3eqtr4rd
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) = ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) )
67 66 breq1d
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e <-> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
68 67 biimpd
 |-  ( ( ( ph /\ p e. QQ ) /\ q e. QQ ) -> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
69 68 ralrimiva
 |-  ( ( ph /\ p e. QQ ) -> A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
70 69 ralrimiva
 |-  ( ph -> A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
71 70 adantr
 |-  ( ( ph /\ e e. RR+ ) -> A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
72 breq2
 |-  ( d = e -> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d <-> ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e ) )
73 72 imbi1d
 |-  ( d = e -> ( ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) <-> ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) )
74 73 2ralbidv
 |-  ( d = e -> ( A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) <-> A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) )
75 74 rspcev
 |-  ( ( e e. RR+ /\ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < e -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) -> E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
76 14 71 75 syl2anc
 |-  ( ( ph /\ e e. RR+ ) -> E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
77 76 ralrimiva
 |-  ( ph -> A. e e. RR+ E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) )
78 eqid
 |-  ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) )
79 0z
 |-  0 e. ZZ
80 zq
 |-  ( 0 e. ZZ -> 0 e. QQ )
81 ne0i
 |-  ( 0 e. QQ -> QQ =/= (/) )
82 79 80 81 mp2b
 |-  QQ =/= (/)
83 82 a1i
 |-  ( ph -> QQ =/= (/) )
84 drngring
 |-  ( R e. DivRing -> R e. Ring )
85 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
86 1 85 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. B )
87 ne0i
 |-  ( ( 1r ` R ) e. B -> B =/= (/) )
88 7 84 86 87 4syl
 |-  ( ph -> B =/= (/) )
89 cnfldxms
 |-  CCfld e. *MetSp
90 qex
 |-  QQ e. _V
91 ressxms
 |-  ( ( CCfld e. *MetSp /\ QQ e. _V ) -> ( CCfld |`s QQ ) e. *MetSp )
92 89 90 91 mp2an
 |-  ( CCfld |`s QQ ) e. *MetSp
93 2 92 eqeltri
 |-  Q e. *MetSp
94 cnfldds
 |-  ( abs o. - ) = ( dist ` CCfld )
95 2 94 ressds
 |-  ( QQ e. _V -> ( abs o. - ) = ( dist ` Q ) )
96 90 95 ax-mp
 |-  ( abs o. - ) = ( dist ` Q )
97 42 96 xmsxmet2
 |-  ( Q e. *MetSp -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) )
98 93 97 mp1i
 |-  ( ph -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) )
99 xmetpsmet
 |-  ( ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( *Met ` QQ ) -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( PsMet ` QQ ) )
100 98 99 syl
 |-  ( ph -> ( ( abs o. - ) |` ( QQ X. QQ ) ) e. ( PsMet ` QQ ) )
101 ngpxms
 |-  ( R e. NrmGrp -> R e. *MetSp )
102 1 24 xmsxmet2
 |-  ( R e. *MetSp -> ( ( dist ` R ) |` ( B X. B ) ) e. ( *Met ` B ) )
103 6 15 101 102 4syl
 |-  ( ph -> ( ( dist ` R ) |` ( B X. B ) ) e. ( *Met ` B ) )
104 xmetpsmet
 |-  ( ( ( dist ` R ) |` ( B X. B ) ) e. ( *Met ` B ) -> ( ( dist ` R ) |` ( B X. B ) ) e. ( PsMet ` B ) )
105 103 104 syl
 |-  ( ph -> ( ( dist ` R ) |` ( B X. B ) ) e. ( PsMet ` B ) )
106 78 4 83 88 100 105 metucn
 |-  ( ph -> ( ( QQHom ` R ) e. ( ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) uCn V ) <-> ( ( QQHom ` R ) : QQ --> B /\ A. e e. RR+ E. d e. RR+ A. p e. QQ A. q e. QQ ( ( p ( ( abs o. - ) |` ( QQ X. QQ ) ) q ) < d -> ( ( ( QQHom ` R ) ` p ) ( ( dist ` R ) |` ( B X. B ) ) ( ( QQHom ` R ) ` q ) ) < e ) ) ) )
107 13 77 106 mpbir2and
 |-  ( ph -> ( QQHom ` R ) e. ( ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) uCn V ) )
108 2 fveq2i
 |-  ( UnifSt ` Q ) = ( UnifSt ` ( CCfld |`s QQ ) )
109 ressuss
 |-  ( QQ e. _V -> ( UnifSt ` ( CCfld |`s QQ ) ) = ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) ) )
110 90 109 ax-mp
 |-  ( UnifSt ` ( CCfld |`s QQ ) ) = ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) )
111 3 108 110 3eqtri
 |-  U = ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) )
112 eqid
 |-  ( UnifSt ` CCfld ) = ( UnifSt ` CCfld )
113 112 cnflduss
 |-  ( UnifSt ` CCfld ) = ( metUnif ` ( abs o. - ) )
114 113 oveq1i
 |-  ( ( UnifSt ` CCfld ) |`t ( QQ X. QQ ) ) = ( ( metUnif ` ( abs o. - ) ) |`t ( QQ X. QQ ) )
115 cnxmet
 |-  ( abs o. - ) e. ( *Met ` CC )
116 xmetpsmet
 |-  ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) )
117 115 116 ax-mp
 |-  ( abs o. - ) e. ( PsMet ` CC )
118 restmetu
 |-  ( ( QQ =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) /\ QQ C_ CC ) -> ( ( metUnif ` ( abs o. - ) ) |`t ( QQ X. QQ ) ) = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) )
119 82 117 57 118 mp3an
 |-  ( ( metUnif ` ( abs o. - ) ) |`t ( QQ X. QQ ) ) = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) )
120 111 114 119 3eqtri
 |-  U = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) )
121 120 a1i
 |-  ( ph -> U = ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) )
122 121 oveq1d
 |-  ( ph -> ( U uCn V ) = ( ( metUnif ` ( ( abs o. - ) |` ( QQ X. QQ ) ) ) uCn V ) )
123 107 122 eleqtrrd
 |-  ( ph -> ( QQHom ` R ) e. ( U uCn V ) )