Step |
Hyp |
Ref |
Expression |
1 |
|
ngpds.n |
|- N = ( norm ` G ) |
2 |
|
ngpds.x |
|- X = ( Base ` G ) |
3 |
|
ngpds.m |
|- .- = ( -g ` G ) |
4 |
|
ngpds.d |
|- D = ( dist ` G ) |
5 |
|
ngpxms |
|- ( G e. NrmGrp -> G e. *MetSp ) |
6 |
2 4
|
xmssym |
|- ( ( G e. *MetSp /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
7 |
5 6
|
syl3an1 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
8 |
1 2 3 4
|
ngpds |
|- ( ( G e. NrmGrp /\ B e. X /\ A e. X ) -> ( B D A ) = ( N ` ( B .- A ) ) ) |
9 |
8
|
3com23 |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( B D A ) = ( N ` ( B .- A ) ) ) |
10 |
7 9
|
eqtrd |
|- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( B .- A ) ) ) |