Metamath Proof Explorer


Theorem qsubdrg

Description: The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion qsubdrg
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing )

Proof

Step Hyp Ref Expression
1 qcn
 |-  ( x e. QQ -> x e. CC )
2 qaddcl
 |-  ( ( x e. QQ /\ y e. QQ ) -> ( x + y ) e. QQ )
3 qnegcl
 |-  ( x e. QQ -> -u x e. QQ )
4 zssq
 |-  ZZ C_ QQ
5 1z
 |-  1 e. ZZ
6 4 5 sselii
 |-  1 e. QQ
7 qmulcl
 |-  ( ( x e. QQ /\ y e. QQ ) -> ( x x. y ) e. QQ )
8 qreccl
 |-  ( ( x e. QQ /\ x =/= 0 ) -> ( 1 / x ) e. QQ )
9 1 2 3 6 7 8 cnsubdrglem
 |-  ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing )