Step |
Hyp |
Ref |
Expression |
1 |
|
qqhucn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
qqhucn.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
3 |
|
qqhucn.u |
⊢ 𝑈 = ( UnifSt ‘ 𝑄 ) |
4 |
|
qqhucn.v |
⊢ 𝑉 = ( metUnif ‘ ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ) |
5 |
|
qqhucn.z |
⊢ 𝑍 = ( ℤMod ‘ 𝑅 ) |
6 |
|
qqhucn.1 |
⊢ ( 𝜑 → 𝑅 ∈ NrmRing ) |
7 |
|
qqhucn.2 |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
8 |
|
qqhucn.3 |
⊢ ( 𝜑 → 𝑍 ∈ NrmMod ) |
9 |
|
qqhucn.4 |
⊢ ( 𝜑 → ( chr ‘ 𝑅 ) = 0 ) |
10 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
11 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
12 |
1 10 11
|
qqhf |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |
13 |
7 9 12
|
syl2anc |
⊢ ( 𝜑 → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ+ ) |
15 |
|
nrgngp |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) |
16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NrmGrp ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ NrmGrp ) |
18 |
13
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ∈ 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ∈ 𝐵 ) |
20 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |
21 |
20
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ∈ 𝐵 ) |
22 |
|
eqid |
⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) |
23 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
24 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
25 |
22 1 23 24
|
ngpdsr |
⊢ ( ( 𝑅 ∈ NrmGrp ∧ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ∈ 𝐵 ∧ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ∈ 𝐵 ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ) ) ) |
26 |
17 19 21 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ) ) ) |
27 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑞 ∈ ℚ ) |
28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑝 ∈ ℚ ) |
29 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
30 |
29
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
31 |
|
subrgsubg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) → ℚ ∈ ( SubGrp ‘ ℂfld ) ) |
32 |
30 31
|
ax-mp |
⊢ ℚ ∈ ( SubGrp ‘ ℂfld ) |
33 |
|
cnfldsub |
⊢ − = ( -g ‘ ℂfld ) |
34 |
|
eqid |
⊢ ( -g ‘ 𝑄 ) = ( -g ‘ 𝑄 ) |
35 |
33 2 34
|
subgsub |
⊢ ( ( ℚ ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 − 𝑝 ) = ( 𝑞 ( -g ‘ 𝑄 ) 𝑝 ) ) |
36 |
32 35
|
mp3an1 |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 − 𝑝 ) = ( 𝑞 ( -g ‘ 𝑄 ) 𝑝 ) ) |
37 |
27 28 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( 𝑞 − 𝑝 ) = ( 𝑞 ( -g ‘ 𝑄 ) 𝑝 ) ) |
38 |
37
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 − 𝑝 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 ( -g ‘ 𝑄 ) 𝑝 ) ) ) |
39 |
1 10 11 2
|
qqhghm |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) |
40 |
7 9 39
|
syl2anc |
⊢ ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) |
42 |
2
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
43 |
42 34 23
|
ghmsub |
⊢ ( ( ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 ( -g ‘ 𝑄 ) 𝑝 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ) ) |
44 |
41 27 28 43
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 ( -g ‘ 𝑄 ) 𝑝 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ) ) |
45 |
38 44
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 − 𝑝 ) ) ) |
46 |
45
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( norm ‘ 𝑅 ) ‘ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 − 𝑝 ) ) ) ) |
47 |
6 7
|
elind |
⊢ ( 𝜑 → 𝑅 ∈ ( NrmRing ∩ DivRing ) ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ ( NrmRing ∩ DivRing ) ) |
49 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑍 ∈ NrmMod ) |
50 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( chr ‘ 𝑅 ) = 0 ) |
51 |
|
qsubcl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 − 𝑝 ) ∈ ℚ ) |
52 |
27 28 51
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( 𝑞 − 𝑝 ) ∈ ℚ ) |
53 |
22 5
|
qqhnm |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑞 − 𝑝 ) ∈ ℚ ) → ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 − 𝑝 ) ) ) = ( abs ‘ ( 𝑞 − 𝑝 ) ) ) |
54 |
48 49 50 52 53
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑞 − 𝑝 ) ) ) = ( abs ‘ ( 𝑞 − 𝑝 ) ) ) |
55 |
26 46 54
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( abs ‘ ( 𝑞 − 𝑝 ) ) ) |
56 |
19 21
|
ovresd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
57 |
|
qsscn |
⊢ ℚ ⊆ ℂ |
58 |
57 28
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑝 ∈ ℂ ) |
59 |
57 27
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → 𝑞 ∈ ℂ ) |
60 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
61 |
60
|
cnmetdval |
⊢ ( ( 𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ) → ( 𝑝 ( abs ∘ − ) 𝑞 ) = ( abs ‘ ( 𝑝 − 𝑞 ) ) ) |
62 |
58 59 61
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( 𝑝 ( abs ∘ − ) 𝑞 ) = ( abs ‘ ( 𝑝 − 𝑞 ) ) ) |
63 |
28 27
|
ovresd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) = ( 𝑝 ( abs ∘ − ) 𝑞 ) ) |
64 |
59 58
|
abssubd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( abs ‘ ( 𝑞 − 𝑝 ) ) = ( abs ‘ ( 𝑝 − 𝑞 ) ) ) |
65 |
62 63 64
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) = ( abs ‘ ( 𝑞 − 𝑝 ) ) ) |
66 |
55 56 65
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
67 |
66
|
breq1d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 ↔ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
68 |
67
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) ∧ 𝑞 ∈ ℚ ) → ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
69 |
68
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℚ ) → ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
70 |
69
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
72 |
|
breq2 |
⊢ ( 𝑑 = 𝑒 → ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 ↔ ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 ) ) |
73 |
72
|
imbi1d |
⊢ ( 𝑑 = 𝑒 → ( ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ↔ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) ) |
74 |
73
|
2ralbidv |
⊢ ( 𝑑 = 𝑒 → ( ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ↔ ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) ) |
75 |
74
|
rspcev |
⊢ ( ( 𝑒 ∈ ℝ+ ∧ ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
76 |
14 71 75
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
77 |
76
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
78 |
|
eqid |
⊢ ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) |
79 |
|
0z |
⊢ 0 ∈ ℤ |
80 |
|
zq |
⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) |
81 |
|
ne0i |
⊢ ( 0 ∈ ℚ → ℚ ≠ ∅ ) |
82 |
79 80 81
|
mp2b |
⊢ ℚ ≠ ∅ |
83 |
82
|
a1i |
⊢ ( 𝜑 → ℚ ≠ ∅ ) |
84 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
85 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
86 |
1 85
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
87 |
|
ne0i |
⊢ ( ( 1r ‘ 𝑅 ) ∈ 𝐵 → 𝐵 ≠ ∅ ) |
88 |
7 84 86 87
|
4syl |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
89 |
|
cnfldxms |
⊢ ℂfld ∈ ∞MetSp |
90 |
|
qex |
⊢ ℚ ∈ V |
91 |
|
ressxms |
⊢ ( ( ℂfld ∈ ∞MetSp ∧ ℚ ∈ V ) → ( ℂfld ↾s ℚ ) ∈ ∞MetSp ) |
92 |
89 90 91
|
mp2an |
⊢ ( ℂfld ↾s ℚ ) ∈ ∞MetSp |
93 |
2 92
|
eqeltri |
⊢ 𝑄 ∈ ∞MetSp |
94 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
95 |
2 94
|
ressds |
⊢ ( ℚ ∈ V → ( abs ∘ − ) = ( dist ‘ 𝑄 ) ) |
96 |
90 95
|
ax-mp |
⊢ ( abs ∘ − ) = ( dist ‘ 𝑄 ) |
97 |
42 96
|
xmsxmet2 |
⊢ ( 𝑄 ∈ ∞MetSp → ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( ∞Met ‘ ℚ ) ) |
98 |
93 97
|
mp1i |
⊢ ( 𝜑 → ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( ∞Met ‘ ℚ ) ) |
99 |
|
xmetpsmet |
⊢ ( ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( ∞Met ‘ ℚ ) → ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( PsMet ‘ ℚ ) ) |
100 |
98 99
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( PsMet ‘ ℚ ) ) |
101 |
|
ngpxms |
⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp ) |
102 |
1 24
|
xmsxmet2 |
⊢ ( 𝑅 ∈ ∞MetSp → ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
103 |
6 15 101 102
|
4syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
104 |
|
xmetpsmet |
⊢ ( ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) → ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( PsMet ‘ 𝐵 ) ) |
105 |
103 104
|
syl |
⊢ ( 𝜑 → ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ∈ ( PsMet ‘ 𝐵 ) ) |
106 |
78 4 83 88 100 105
|
metucn |
⊢ ( 𝜑 → ( ( ℚHom ‘ 𝑅 ) ∈ ( ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) Cnu 𝑉 ) ↔ ( ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑝 ∈ ℚ ∀ 𝑞 ∈ ℚ ( ( 𝑝 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑝 ) ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) ) ) |
107 |
13 77 106
|
mpbir2and |
⊢ ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) Cnu 𝑉 ) ) |
108 |
2
|
fveq2i |
⊢ ( UnifSt ‘ 𝑄 ) = ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) |
109 |
|
ressuss |
⊢ ( ℚ ∈ V → ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) = ( ( UnifSt ‘ ℂfld ) ↾t ( ℚ × ℚ ) ) ) |
110 |
90 109
|
ax-mp |
⊢ ( UnifSt ‘ ( ℂfld ↾s ℚ ) ) = ( ( UnifSt ‘ ℂfld ) ↾t ( ℚ × ℚ ) ) |
111 |
3 108 110
|
3eqtri |
⊢ 𝑈 = ( ( UnifSt ‘ ℂfld ) ↾t ( ℚ × ℚ ) ) |
112 |
|
eqid |
⊢ ( UnifSt ‘ ℂfld ) = ( UnifSt ‘ ℂfld ) |
113 |
112
|
cnflduss |
⊢ ( UnifSt ‘ ℂfld ) = ( metUnif ‘ ( abs ∘ − ) ) |
114 |
113
|
oveq1i |
⊢ ( ( UnifSt ‘ ℂfld ) ↾t ( ℚ × ℚ ) ) = ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℚ × ℚ ) ) |
115 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
116 |
|
xmetpsmet |
⊢ ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) → ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ) |
117 |
115 116
|
ax-mp |
⊢ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) |
118 |
|
restmetu |
⊢ ( ( ℚ ≠ ∅ ∧ ( abs ∘ − ) ∈ ( PsMet ‘ ℂ ) ∧ ℚ ⊆ ℂ ) → ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℚ × ℚ ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) ) |
119 |
82 117 57 118
|
mp3an |
⊢ ( ( metUnif ‘ ( abs ∘ − ) ) ↾t ( ℚ × ℚ ) ) = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) |
120 |
111 114 119
|
3eqtri |
⊢ 𝑈 = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) |
121 |
120
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) ) |
122 |
121
|
oveq1d |
⊢ ( 𝜑 → ( 𝑈 Cnu 𝑉 ) = ( ( metUnif ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) Cnu 𝑉 ) ) |
123 |
107 122
|
eleqtrrd |
⊢ ( 𝜑 → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑈 Cnu 𝑉 ) ) |