Step |
Hyp |
Ref |
Expression |
1 |
|
qqhnm.n |
⊢ 𝑁 = ( norm ‘ 𝑅 ) |
2 |
|
qqhnm.z |
⊢ 𝑍 = ( ℤMod ‘ 𝑅 ) |
3 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑄 ∈ ℚ ) |
4 |
|
qeqnumdivden |
⊢ ( 𝑄 ∈ ℚ → 𝑄 = ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑄 ∈ ℚ → ( abs ‘ 𝑄 ) = ( abs ‘ ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) ) |
6 |
3 5
|
syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( abs ‘ 𝑄 ) = ( abs ‘ ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) ) |
7 |
|
qnumcl |
⊢ ( 𝑄 ∈ ℚ → ( numer ‘ 𝑄 ) ∈ ℤ ) |
8 |
3 7
|
syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( numer ‘ 𝑄 ) ∈ ℤ ) |
9 |
8
|
zcnd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( numer ‘ 𝑄 ) ∈ ℂ ) |
10 |
|
qdencl |
⊢ ( 𝑄 ∈ ℚ → ( denom ‘ 𝑄 ) ∈ ℕ ) |
11 |
3 10
|
syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( denom ‘ 𝑄 ) ∈ ℕ ) |
12 |
11
|
nncnd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( denom ‘ 𝑄 ) ∈ ℂ ) |
13 |
|
nnne0 |
⊢ ( ( denom ‘ 𝑄 ) ∈ ℕ → ( denom ‘ 𝑄 ) ≠ 0 ) |
14 |
3 10 13
|
3syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( denom ‘ 𝑄 ) ≠ 0 ) |
15 |
9 12 14
|
absdivd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( abs ‘ ( ( numer ‘ 𝑄 ) / ( denom ‘ 𝑄 ) ) ) = ( ( abs ‘ ( numer ‘ 𝑄 ) ) / ( abs ‘ ( denom ‘ 𝑄 ) ) ) ) |
16 |
|
inss2 |
⊢ ( NrmRing ∩ DivRing ) ⊆ DivRing |
17 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑅 ∈ ( NrmRing ∩ DivRing ) ) |
18 |
16 17
|
sselid |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑅 ∈ DivRing ) |
19 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( chr ‘ 𝑅 ) = 0 ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
21 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
23 |
20 21 22
|
qqhvval |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) = ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ( /r ‘ 𝑅 ) ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) |
24 |
23
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( 𝑁 ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) ) = ( 𝑁 ‘ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ( /r ‘ 𝑅 ) ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) ) |
25 |
18 19 3 24
|
syl21anc |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( 𝑁 ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) ) = ( 𝑁 ‘ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ( /r ‘ 𝑅 ) ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) ) |
26 |
|
inss1 |
⊢ ( NrmRing ∩ DivRing ) ⊆ NrmRing |
27 |
26 17
|
sselid |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑅 ∈ NrmRing ) |
28 |
|
drngnzr |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ NzRing ) |
29 |
18 28
|
syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑅 ∈ NzRing ) |
30 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
31 |
22
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
32 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
33 |
32 20
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
34 |
18 30 31 33
|
4syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
35 |
34 8
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ) |
36 |
11
|
nnzd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( denom ‘ 𝑄 ) ∈ ℤ ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
38 |
20 22 37
|
elzrhunit |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( denom ‘ 𝑄 ) ∈ ℤ ∧ ( denom ‘ 𝑄 ) ≠ 0 ) ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
39 |
18 19 36 14 38
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
40 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
41 |
20 1 40 21
|
nmdvr |
⊢ ( ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) ∧ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( 𝑁 ‘ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ( /r ‘ 𝑅 ) ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) = ( ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ) / ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) ) |
42 |
27 29 35 39 41
|
syl22anc |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( 𝑁 ‘ ( ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ( /r ‘ 𝑅 ) ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) = ( ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ) / ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) ) |
43 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑍 ∈ NrmMod ) |
44 |
2
|
zhmnrg |
⊢ ( 𝑅 ∈ NrmRing → 𝑍 ∈ NrmRing ) |
45 |
27 44
|
syl |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑍 ∈ NrmRing ) |
46 |
20 1 2 22
|
zrhnm |
⊢ ( ( ( 𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) ∧ ( numer ‘ 𝑄 ) ∈ ℤ ) → ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ) = ( abs ‘ ( numer ‘ 𝑄 ) ) ) |
47 |
43 45 29 8 46
|
syl31anc |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ) = ( abs ‘ ( numer ‘ 𝑄 ) ) ) |
48 |
20 1 2 22
|
zrhnm |
⊢ ( ( ( 𝑍 ∈ NrmMod ∧ 𝑍 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) ∧ ( denom ‘ 𝑄 ) ∈ ℤ ) → ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) = ( abs ‘ ( denom ‘ 𝑄 ) ) ) |
49 |
43 45 29 36 48
|
syl31anc |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) = ( abs ‘ ( denom ‘ 𝑄 ) ) ) |
50 |
47 49
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( numer ‘ 𝑄 ) ) ) / ( 𝑁 ‘ ( ( ℤRHom ‘ 𝑅 ) ‘ ( denom ‘ 𝑄 ) ) ) ) = ( ( abs ‘ ( numer ‘ 𝑄 ) ) / ( abs ‘ ( denom ‘ 𝑄 ) ) ) ) |
51 |
25 42 50
|
3eqtrrd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( abs ‘ ( numer ‘ 𝑄 ) ) / ( abs ‘ ( denom ‘ 𝑄 ) ) ) = ( 𝑁 ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) ) ) |
52 |
6 15 51
|
3eqtrrd |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( 𝑁 ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) ) = ( abs ‘ 𝑄 ) ) |