Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
qqhval2.1 |
⊢ / = ( /r ‘ 𝑅 ) |
3 |
|
qqhval2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
4 |
1 2 3
|
qqhval2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ℚHom ‘ 𝑅 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → 𝑞 = 𝑄 ) |
7 |
6
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( numer ‘ 𝑞 ) = ( numer ‘ 𝑄 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) = ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) ) |
9 |
6
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( denom ‘ 𝑞 ) = ( denom ‘ 𝑄 ) ) |
10 |
9
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) = ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) |
11 |
8 10
|
oveq12d |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑄 ∈ ℚ ) |
13 |
|
ovexd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) ∈ V ) |
14 |
5 11 12 13
|
fvmptd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) = ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) ) |