Metamath Proof Explorer


Theorem qqhvval

Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 𝐵 = ( Base ‘ 𝑅 )
qqhval2.1 / = ( /r𝑅 )
qqhval2.2 𝐿 = ( ℤRHom ‘ 𝑅 )
Assertion qqhvval ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) = ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) )

Proof

Step Hyp Ref Expression
1 qqhval2.0 𝐵 = ( Base ‘ 𝑅 )
2 qqhval2.1 / = ( /r𝑅 )
3 qqhval2.2 𝐿 = ( ℤRHom ‘ 𝑅 )
4 1 2 3 qqhval2 ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) )
5 4 adantr ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ℚHom ‘ 𝑅 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) )
6 simpr ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → 𝑞 = 𝑄 )
7 6 fveq2d ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( numer ‘ 𝑞 ) = ( numer ‘ 𝑄 ) )
8 7 fveq2d ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) = ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) )
9 6 fveq2d ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( denom ‘ 𝑞 ) = ( denom ‘ 𝑄 ) )
10 9 fveq2d ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) = ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) )
11 8 10 oveq12d ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) ∧ 𝑞 = 𝑄 ) → ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) )
12 simpr ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → 𝑄 ∈ ℚ )
13 ovexd ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) ∈ V )
14 5 11 12 13 fvmptd ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑄 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) = ( ( 𝐿 ‘ ( numer ‘ 𝑄 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑄 ) ) ) )