| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
| 2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
| 3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
| 4 |
1 2 3
|
qqhval2 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |
| 5 |
4
|
adantr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |
| 6 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> q = Q ) |
| 7 |
6
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( numer ` q ) = ( numer ` Q ) ) |
| 8 |
7
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( L ` ( numer ` q ) ) = ( L ` ( numer ` Q ) ) ) |
| 9 |
6
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( denom ` q ) = ( denom ` Q ) ) |
| 10 |
9
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( L ` ( denom ` q ) ) = ( L ` ( denom ` Q ) ) ) |
| 11 |
8 10
|
oveq12d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) ) |
| 12 |
|
simpr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> Q e. QQ ) |
| 13 |
|
ovexd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) e. _V ) |
| 14 |
5 11 12 13
|
fvmptd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( QQHom ` R ) ` Q ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) ) |