Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
4 |
1 2 3
|
qqhval2 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |
5 |
4
|
adantr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |
6 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> q = Q ) |
7 |
6
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( numer ` q ) = ( numer ` Q ) ) |
8 |
7
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( L ` ( numer ` q ) ) = ( L ` ( numer ` Q ) ) ) |
9 |
6
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( denom ` q ) = ( denom ` Q ) ) |
10 |
9
|
fveq2d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( L ` ( denom ` q ) ) = ( L ` ( denom ` Q ) ) ) |
11 |
8 10
|
oveq12d |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) ) |
12 |
|
simpr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> Q e. QQ ) |
13 |
|
ovexd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) e. _V ) |
14 |
5 11 12 13
|
fvmptd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( QQHom ` R ) ` Q ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) ) |