Metamath Proof Explorer


Theorem qqhvval

Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses qqhval2.0
|- B = ( Base ` R )
qqhval2.1
|- ./ = ( /r ` R )
qqhval2.2
|- L = ( ZRHom ` R )
Assertion qqhvval
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( QQHom ` R ) ` Q ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) )

Proof

Step Hyp Ref Expression
1 qqhval2.0
 |-  B = ( Base ` R )
2 qqhval2.1
 |-  ./ = ( /r ` R )
3 qqhval2.2
 |-  L = ( ZRHom ` R )
4 1 2 3 qqhval2
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) )
5 4 adantr
 |-  ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) )
6 simpr
 |-  ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> q = Q )
7 6 fveq2d
 |-  ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( numer ` q ) = ( numer ` Q ) )
8 7 fveq2d
 |-  ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( L ` ( numer ` q ) ) = ( L ` ( numer ` Q ) ) )
9 6 fveq2d
 |-  ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( denom ` q ) = ( denom ` Q ) )
10 9 fveq2d
 |-  ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( L ` ( denom ` q ) ) = ( L ` ( denom ` Q ) ) )
11 8 10 oveq12d
 |-  ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) /\ q = Q ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) )
12 simpr
 |-  ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> Q e. QQ )
13 ovexd
 |-  ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) e. _V )
14 5 11 12 13 fvmptd
 |-  ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( QQHom ` R ) ` Q ) = ( ( L ` ( numer ` Q ) ) ./ ( L ` ( denom ` Q ) ) ) )