| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qqhval2.0 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | qqhval2.1 |  |-  ./ = ( /r ` R ) | 
						
							| 3 |  | qqhval2.2 |  |-  L = ( ZRHom ` R ) | 
						
							| 4 |  | zssq |  |-  ZZ C_ QQ | 
						
							| 5 |  | 0z |  |-  0 e. ZZ | 
						
							| 6 | 4 5 | sselii |  |-  0 e. QQ | 
						
							| 7 | 1 2 3 | qqhvval |  |-  ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ 0 e. QQ ) -> ( ( QQHom ` R ) ` 0 ) = ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) ) | 
						
							| 9 |  | 1z |  |-  1 e. ZZ | 
						
							| 10 |  | gcd0id |  |-  ( 1 e. ZZ -> ( 0 gcd 1 ) = ( abs ` 1 ) ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( 0 gcd 1 ) = ( abs ` 1 ) | 
						
							| 12 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 13 | 11 12 | eqtri |  |-  ( 0 gcd 1 ) = 1 | 
						
							| 14 |  | 0cn |  |-  0 e. CC | 
						
							| 15 | 14 | div1i |  |-  ( 0 / 1 ) = 0 | 
						
							| 16 | 15 | eqcomi |  |-  0 = ( 0 / 1 ) | 
						
							| 17 | 13 16 | pm3.2i |  |-  ( ( 0 gcd 1 ) = 1 /\ 0 = ( 0 / 1 ) ) | 
						
							| 18 |  | 1nn |  |-  1 e. NN | 
						
							| 19 |  | qnumdenbi |  |-  ( ( 0 e. QQ /\ 0 e. ZZ /\ 1 e. NN ) -> ( ( ( 0 gcd 1 ) = 1 /\ 0 = ( 0 / 1 ) ) <-> ( ( numer ` 0 ) = 0 /\ ( denom ` 0 ) = 1 ) ) ) | 
						
							| 20 | 6 5 18 19 | mp3an |  |-  ( ( ( 0 gcd 1 ) = 1 /\ 0 = ( 0 / 1 ) ) <-> ( ( numer ` 0 ) = 0 /\ ( denom ` 0 ) = 1 ) ) | 
						
							| 21 | 17 20 | mpbi |  |-  ( ( numer ` 0 ) = 0 /\ ( denom ` 0 ) = 1 ) | 
						
							| 22 | 21 | simpli |  |-  ( numer ` 0 ) = 0 | 
						
							| 23 | 22 | fveq2i |  |-  ( L ` ( numer ` 0 ) ) = ( L ` 0 ) | 
						
							| 24 | 21 | simpri |  |-  ( denom ` 0 ) = 1 | 
						
							| 25 | 24 | fveq2i |  |-  ( L ` ( denom ` 0 ) ) = ( L ` 1 ) | 
						
							| 26 | 23 25 | oveq12i |  |-  ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) = ( ( L ` 0 ) ./ ( L ` 1 ) ) | 
						
							| 27 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 29 | 3 28 | zrh0 |  |-  ( R e. Ring -> ( L ` 0 ) = ( 0g ` R ) ) | 
						
							| 30 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 31 | 3 30 | zrh1 |  |-  ( R e. Ring -> ( L ` 1 ) = ( 1r ` R ) ) | 
						
							| 32 | 29 31 | oveq12d |  |-  ( R e. Ring -> ( ( L ` 0 ) ./ ( L ` 1 ) ) = ( ( 0g ` R ) ./ ( 1r ` R ) ) ) | 
						
							| 33 | 27 32 | syl |  |-  ( R e. DivRing -> ( ( L ` 0 ) ./ ( L ` 1 ) ) = ( ( 0g ` R ) ./ ( 1r ` R ) ) ) | 
						
							| 34 |  | drnggrp |  |-  ( R e. DivRing -> R e. Grp ) | 
						
							| 35 | 1 28 | grpidcl |  |-  ( R e. Grp -> ( 0g ` R ) e. B ) | 
						
							| 36 | 34 35 | syl |  |-  ( R e. DivRing -> ( 0g ` R ) e. B ) | 
						
							| 37 | 1 2 30 | dvr1 |  |-  ( ( R e. Ring /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) ./ ( 1r ` R ) ) = ( 0g ` R ) ) | 
						
							| 38 | 27 36 37 | syl2anc |  |-  ( R e. DivRing -> ( ( 0g ` R ) ./ ( 1r ` R ) ) = ( 0g ` R ) ) | 
						
							| 39 | 33 38 | eqtrd |  |-  ( R e. DivRing -> ( ( L ` 0 ) ./ ( L ` 1 ) ) = ( 0g ` R ) ) | 
						
							| 40 | 26 39 | eqtrid |  |-  ( R e. DivRing -> ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) = ( 0g ` R ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) = ( 0g ` R ) ) | 
						
							| 42 | 8 41 | eqtrd |  |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |