Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
4 |
|
zssq |
|- ZZ C_ QQ |
5 |
|
0z |
|- 0 e. ZZ |
6 |
4 5
|
sselii |
|- 0 e. QQ |
7 |
1 2 3
|
qqhvval |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ 0 e. QQ ) -> ( ( QQHom ` R ) ` 0 ) = ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) ) |
8 |
6 7
|
mpan2 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) ) |
9 |
|
1z |
|- 1 e. ZZ |
10 |
|
gcd0id |
|- ( 1 e. ZZ -> ( 0 gcd 1 ) = ( abs ` 1 ) ) |
11 |
9 10
|
ax-mp |
|- ( 0 gcd 1 ) = ( abs ` 1 ) |
12 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
13 |
11 12
|
eqtri |
|- ( 0 gcd 1 ) = 1 |
14 |
|
0cn |
|- 0 e. CC |
15 |
14
|
div1i |
|- ( 0 / 1 ) = 0 |
16 |
15
|
eqcomi |
|- 0 = ( 0 / 1 ) |
17 |
13 16
|
pm3.2i |
|- ( ( 0 gcd 1 ) = 1 /\ 0 = ( 0 / 1 ) ) |
18 |
|
1nn |
|- 1 e. NN |
19 |
|
qnumdenbi |
|- ( ( 0 e. QQ /\ 0 e. ZZ /\ 1 e. NN ) -> ( ( ( 0 gcd 1 ) = 1 /\ 0 = ( 0 / 1 ) ) <-> ( ( numer ` 0 ) = 0 /\ ( denom ` 0 ) = 1 ) ) ) |
20 |
6 5 18 19
|
mp3an |
|- ( ( ( 0 gcd 1 ) = 1 /\ 0 = ( 0 / 1 ) ) <-> ( ( numer ` 0 ) = 0 /\ ( denom ` 0 ) = 1 ) ) |
21 |
17 20
|
mpbi |
|- ( ( numer ` 0 ) = 0 /\ ( denom ` 0 ) = 1 ) |
22 |
21
|
simpli |
|- ( numer ` 0 ) = 0 |
23 |
22
|
fveq2i |
|- ( L ` ( numer ` 0 ) ) = ( L ` 0 ) |
24 |
21
|
simpri |
|- ( denom ` 0 ) = 1 |
25 |
24
|
fveq2i |
|- ( L ` ( denom ` 0 ) ) = ( L ` 1 ) |
26 |
23 25
|
oveq12i |
|- ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) = ( ( L ` 0 ) ./ ( L ` 1 ) ) |
27 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
28 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
29 |
3 28
|
zrh0 |
|- ( R e. Ring -> ( L ` 0 ) = ( 0g ` R ) ) |
30 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
31 |
3 30
|
zrh1 |
|- ( R e. Ring -> ( L ` 1 ) = ( 1r ` R ) ) |
32 |
29 31
|
oveq12d |
|- ( R e. Ring -> ( ( L ` 0 ) ./ ( L ` 1 ) ) = ( ( 0g ` R ) ./ ( 1r ` R ) ) ) |
33 |
27 32
|
syl |
|- ( R e. DivRing -> ( ( L ` 0 ) ./ ( L ` 1 ) ) = ( ( 0g ` R ) ./ ( 1r ` R ) ) ) |
34 |
|
drnggrp |
|- ( R e. DivRing -> R e. Grp ) |
35 |
1 28
|
grpidcl |
|- ( R e. Grp -> ( 0g ` R ) e. B ) |
36 |
34 35
|
syl |
|- ( R e. DivRing -> ( 0g ` R ) e. B ) |
37 |
1 2 30
|
dvr1 |
|- ( ( R e. Ring /\ ( 0g ` R ) e. B ) -> ( ( 0g ` R ) ./ ( 1r ` R ) ) = ( 0g ` R ) ) |
38 |
27 36 37
|
syl2anc |
|- ( R e. DivRing -> ( ( 0g ` R ) ./ ( 1r ` R ) ) = ( 0g ` R ) ) |
39 |
33 38
|
eqtrd |
|- ( R e. DivRing -> ( ( L ` 0 ) ./ ( L ` 1 ) ) = ( 0g ` R ) ) |
40 |
26 39
|
eqtrid |
|- ( R e. DivRing -> ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) = ( 0g ` R ) ) |
41 |
40
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( L ` ( numer ` 0 ) ) ./ ( L ` ( denom ` 0 ) ) ) = ( 0g ` R ) ) |
42 |
8 41
|
eqtrd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |