Metamath Proof Explorer


Theorem qqh0

Description: The image of 0 by the QQHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B=BaseR
qqhval2.1 ×˙=/rR
qqhval2.2 L=ℤRHomR
Assertion qqh0 RDivRingchrR=0ℚHomR0=0R

Proof

Step Hyp Ref Expression
1 qqhval2.0 B=BaseR
2 qqhval2.1 ×˙=/rR
3 qqhval2.2 L=ℤRHomR
4 zssq
5 0z 0
6 4 5 sselii 0
7 1 2 3 qqhvval RDivRingchrR=00ℚHomR0=Lnumer0×˙Ldenom0
8 6 7 mpan2 RDivRingchrR=0ℚHomR0=Lnumer0×˙Ldenom0
9 1z 1
10 gcd0id 10gcd1=1
11 9 10 ax-mp 0gcd1=1
12 abs1 1=1
13 11 12 eqtri 0gcd1=1
14 0cn 0
15 14 div1i 01=0
16 15 eqcomi 0=01
17 13 16 pm3.2i 0gcd1=10=01
18 1nn 1
19 qnumdenbi 0010gcd1=10=01numer0=0denom0=1
20 6 5 18 19 mp3an 0gcd1=10=01numer0=0denom0=1
21 17 20 mpbi numer0=0denom0=1
22 21 simpli numer0=0
23 22 fveq2i Lnumer0=L0
24 21 simpri denom0=1
25 24 fveq2i Ldenom0=L1
26 23 25 oveq12i Lnumer0×˙Ldenom0=L0×˙L1
27 drngring RDivRingRRing
28 eqid 0R=0R
29 3 28 zrh0 RRingL0=0R
30 eqid 1R=1R
31 3 30 zrh1 RRingL1=1R
32 29 31 oveq12d RRingL0×˙L1=0R×˙1R
33 27 32 syl RDivRingL0×˙L1=0R×˙1R
34 drnggrp RDivRingRGrp
35 1 28 grpidcl RGrp0RB
36 34 35 syl RDivRing0RB
37 1 2 30 dvr1 RRing0RB0R×˙1R=0R
38 27 36 37 syl2anc RDivRing0R×˙1R=0R
39 33 38 eqtrd RDivRingL0×˙L1=0R
40 26 39 eqtrid RDivRingLnumer0×˙Ldenom0=0R
41 40 adantr RDivRingchrR=0Lnumer0×˙Ldenom0=0R
42 8 41 eqtrd RDivRingchrR=0ℚHomR0=0R