Metamath Proof Explorer


Theorem qqh0

Description: The image of 0 by the QQHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B = Base R
qqhval2.1 × ˙ = / r R
qqhval2.2 L = ℤRHom R
Assertion qqh0 R DivRing chr R = 0 ℚHom R 0 = 0 R

Proof

Step Hyp Ref Expression
1 qqhval2.0 B = Base R
2 qqhval2.1 × ˙ = / r R
3 qqhval2.2 L = ℤRHom R
4 zssq
5 0z 0
6 4 5 sselii 0
7 1 2 3 qqhvval R DivRing chr R = 0 0 ℚHom R 0 = L numer 0 × ˙ L denom 0
8 6 7 mpan2 R DivRing chr R = 0 ℚHom R 0 = L numer 0 × ˙ L denom 0
9 1z 1
10 gcd0id 1 0 gcd 1 = 1
11 9 10 ax-mp 0 gcd 1 = 1
12 abs1 1 = 1
13 11 12 eqtri 0 gcd 1 = 1
14 0cn 0
15 14 div1i 0 1 = 0
16 15 eqcomi 0 = 0 1
17 13 16 pm3.2i 0 gcd 1 = 1 0 = 0 1
18 1nn 1
19 qnumdenbi 0 0 1 0 gcd 1 = 1 0 = 0 1 numer 0 = 0 denom 0 = 1
20 6 5 18 19 mp3an 0 gcd 1 = 1 0 = 0 1 numer 0 = 0 denom 0 = 1
21 17 20 mpbi numer 0 = 0 denom 0 = 1
22 21 simpli numer 0 = 0
23 22 fveq2i L numer 0 = L 0
24 21 simpri denom 0 = 1
25 24 fveq2i L denom 0 = L 1
26 23 25 oveq12i L numer 0 × ˙ L denom 0 = L 0 × ˙ L 1
27 drngring R DivRing R Ring
28 eqid 0 R = 0 R
29 3 28 zrh0 R Ring L 0 = 0 R
30 eqid 1 R = 1 R
31 3 30 zrh1 R Ring L 1 = 1 R
32 29 31 oveq12d R Ring L 0 × ˙ L 1 = 0 R × ˙ 1 R
33 27 32 syl R DivRing L 0 × ˙ L 1 = 0 R × ˙ 1 R
34 drnggrp R DivRing R Grp
35 1 28 grpidcl R Grp 0 R B
36 34 35 syl R DivRing 0 R B
37 1 2 30 dvr1 R Ring 0 R B 0 R × ˙ 1 R = 0 R
38 27 36 37 syl2anc R DivRing 0 R × ˙ 1 R = 0 R
39 33 38 eqtrd R DivRing L 0 × ˙ L 1 = 0 R
40 26 39 syl5eq R DivRing L numer 0 × ˙ L denom 0 = 0 R
41 40 adantr R DivRing chr R = 0 L numer 0 × ˙ L denom 0 = 0 R
42 8 41 eqtrd R DivRing chr R = 0 ℚHom R 0 = 0 R