Description: The image of 0 by the QQHom homomorphism is the ring's zero. (Contributed by Thierry Arnoux, 22-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qqhval2.0 | |
|
qqhval2.1 | |
||
qqhval2.2 | |
||
Assertion | qqh0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qqhval2.0 | |
|
2 | qqhval2.1 | |
|
3 | qqhval2.2 | |
|
4 | zssq | |
|
5 | 0z | |
|
6 | 4 5 | sselii | |
7 | 1 2 3 | qqhvval | |
8 | 6 7 | mpan2 | |
9 | 1z | |
|
10 | gcd0id | |
|
11 | 9 10 | ax-mp | |
12 | abs1 | |
|
13 | 11 12 | eqtri | |
14 | 0cn | |
|
15 | 14 | div1i | |
16 | 15 | eqcomi | |
17 | 13 16 | pm3.2i | |
18 | 1nn | |
|
19 | qnumdenbi | |
|
20 | 6 5 18 19 | mp3an | |
21 | 17 20 | mpbi | |
22 | 21 | simpli | |
23 | 22 | fveq2i | |
24 | 21 | simpri | |
25 | 24 | fveq2i | |
26 | 23 25 | oveq12i | |
27 | drngring | |
|
28 | eqid | |
|
29 | 3 28 | zrh0 | |
30 | eqid | |
|
31 | 3 30 | zrh1 | |
32 | 29 31 | oveq12d | |
33 | 27 32 | syl | |
34 | drnggrp | |
|
35 | 1 28 | grpidcl | |
36 | 34 35 | syl | |
37 | 1 2 30 | dvr1 | |
38 | 27 36 37 | syl2anc | |
39 | 33 38 | eqtrd | |
40 | 26 39 | eqtrid | |
41 | 40 | adantr | |
42 | 8 41 | eqtrd | |