Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qnumdenbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qredeu | |
|
2 | riotacl | |
|
3 | 1st2nd2 | |
|
4 | 1 2 3 | 3syl | |
5 | qnumval | |
|
6 | qdenval | |
|
7 | 5 6 | opeq12d | |
8 | 4 7 | eqtr4d | |
9 | 8 | eqeq1d | |
10 | 9 | 3ad2ant1 | |
11 | fvex | |
|
12 | fvex | |
|
13 | 11 12 | opth | |
14 | 10 13 | bitr2di | |
15 | opelxpi | |
|
16 | 15 | 3adant1 | |
17 | 1 | 3ad2ant1 | |
18 | fveq2 | |
|
19 | fveq2 | |
|
20 | 18 19 | oveq12d | |
21 | 20 | eqeq1d | |
22 | 18 19 | oveq12d | |
23 | 22 | eqeq2d | |
24 | 21 23 | anbi12d | |
25 | 24 | riota2 | |
26 | 16 17 25 | syl2anc | |
27 | op1stg | |
|
28 | op2ndg | |
|
29 | 27 28 | oveq12d | |
30 | 29 | 3adant1 | |
31 | 30 | eqeq1d | |
32 | 27 | 3adant1 | |
33 | 28 | 3adant1 | |
34 | 32 33 | oveq12d | |
35 | 34 | eqeq2d | |
36 | 31 35 | anbi12d | |
37 | 14 26 36 | 3bitr2rd | |