Metamath Proof Explorer


Theorem qnumdenbi

Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion qnumdenbi ABCBgcdC=1A=BCnumerA=BdenomA=C

Proof

Step Hyp Ref Expression
1 qredeu A∃!a×1stagcd2nda=1A=1sta2nda
2 riotacl ∃!a×1stagcd2nda=1A=1sta2ndaιa×|1stagcd2nda=1A=1sta2nda×
3 1st2nd2 ιa×|1stagcd2nda=1A=1sta2nda×ιa×|1stagcd2nda=1A=1sta2nda=1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda
4 1 2 3 3syl Aιa×|1stagcd2nda=1A=1sta2nda=1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda
5 qnumval AnumerA=1stιa×|1stagcd2nda=1A=1sta2nda
6 qdenval AdenomA=2ndιa×|1stagcd2nda=1A=1sta2nda
7 5 6 opeq12d AnumerAdenomA=1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda
8 4 7 eqtr4d Aιa×|1stagcd2nda=1A=1sta2nda=numerAdenomA
9 8 eqeq1d Aιa×|1stagcd2nda=1A=1sta2nda=BCnumerAdenomA=BC
10 9 3ad2ant1 ABCιa×|1stagcd2nda=1A=1sta2nda=BCnumerAdenomA=BC
11 fvex numerAV
12 fvex denomAV
13 11 12 opth numerAdenomA=BCnumerA=BdenomA=C
14 10 13 bitr2di ABCnumerA=BdenomA=Cιa×|1stagcd2nda=1A=1sta2nda=BC
15 opelxpi BCBC×
16 15 3adant1 ABCBC×
17 1 3ad2ant1 ABC∃!a×1stagcd2nda=1A=1sta2nda
18 fveq2 a=BC1sta=1stBC
19 fveq2 a=BC2nda=2ndBC
20 18 19 oveq12d a=BC1stagcd2nda=1stBCgcd2ndBC
21 20 eqeq1d a=BC1stagcd2nda=11stBCgcd2ndBC=1
22 18 19 oveq12d a=BC1sta2nda=1stBC2ndBC
23 22 eqeq2d a=BCA=1sta2ndaA=1stBC2ndBC
24 21 23 anbi12d a=BC1stagcd2nda=1A=1sta2nda1stBCgcd2ndBC=1A=1stBC2ndBC
25 24 riota2 BC×∃!a×1stagcd2nda=1A=1sta2nda1stBCgcd2ndBC=1A=1stBC2ndBCιa×|1stagcd2nda=1A=1sta2nda=BC
26 16 17 25 syl2anc ABC1stBCgcd2ndBC=1A=1stBC2ndBCιa×|1stagcd2nda=1A=1sta2nda=BC
27 op1stg BC1stBC=B
28 op2ndg BC2ndBC=C
29 27 28 oveq12d BC1stBCgcd2ndBC=BgcdC
30 29 3adant1 ABC1stBCgcd2ndBC=BgcdC
31 30 eqeq1d ABC1stBCgcd2ndBC=1BgcdC=1
32 27 3adant1 ABC1stBC=B
33 28 3adant1 ABC2ndBC=C
34 32 33 oveq12d ABC1stBC2ndBC=BC
35 34 eqeq2d ABCA=1stBC2ndBCA=BC
36 31 35 anbi12d ABC1stBCgcd2ndBC=1A=1stBC2ndBCBgcdC=1A=BC
37 14 26 36 3bitr2rd ABCBgcdC=1A=BCnumerA=BdenomA=C