Metamath Proof Explorer


Definition df-numer

Description: The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion df-numer numer=y1stιx×|1stxgcd2ndx=1y=1stx2ndx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnumer classnumer
1 vy setvary
2 cq class
3 c1st class1st
4 vx setvarx
5 cz class
6 cn class
7 5 6 cxp class×
8 4 cv setvarx
9 8 3 cfv class1stx
10 cgcd classgcd
11 c2nd class2nd
12 8 11 cfv class2ndx
13 9 12 10 co class1stxgcd2ndx
14 c1 class1
15 13 14 wceq wff1stxgcd2ndx=1
16 1 cv setvary
17 cdiv class÷
18 9 12 17 co class1stx2ndx
19 16 18 wceq wffy=1stx2ndx
20 15 19 wa wff1stxgcd2ndx=1y=1stx2ndx
21 20 4 7 crio classιx×|1stxgcd2ndx=1y=1stx2ndx
22 21 3 cfv class1stιx×|1stxgcd2ndx=1y=1stx2ndx
23 1 2 22 cmpt classy1stιx×|1stxgcd2ndx=1y=1stx2ndx
24 0 23 wceq wffnumer=y1stιx×|1stxgcd2ndx=1y=1stx2ndx