Metamath Proof Explorer


Theorem qqhvval

Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B=BaseR
qqhval2.1 ×˙=/rR
qqhval2.2 L=ℤRHomR
Assertion qqhvval RDivRingchrR=0QℚHomRQ=LnumerQ×˙LdenomQ

Proof

Step Hyp Ref Expression
1 qqhval2.0 B=BaseR
2 qqhval2.1 ×˙=/rR
3 qqhval2.2 L=ℤRHomR
4 1 2 3 qqhval2 RDivRingchrR=0ℚHomR=qLnumerq×˙Ldenomq
5 4 adantr RDivRingchrR=0QℚHomR=qLnumerq×˙Ldenomq
6 simpr RDivRingchrR=0Qq=Qq=Q
7 6 fveq2d RDivRingchrR=0Qq=Qnumerq=numerQ
8 7 fveq2d RDivRingchrR=0Qq=QLnumerq=LnumerQ
9 6 fveq2d RDivRingchrR=0Qq=Qdenomq=denomQ
10 9 fveq2d RDivRingchrR=0Qq=QLdenomq=LdenomQ
11 8 10 oveq12d RDivRingchrR=0Qq=QLnumerq×˙Ldenomq=LnumerQ×˙LdenomQ
12 simpr RDivRingchrR=0QQ
13 ovexd RDivRingchrR=0QLnumerQ×˙LdenomQV
14 5 11 12 13 fvmptd RDivRingchrR=0QℚHomRQ=LnumerQ×˙LdenomQ