Metamath Proof Explorer


Theorem qqhvval

Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B = Base R
qqhval2.1 × ˙ = / r R
qqhval2.2 L = ℤRHom R
Assertion qqhvval R DivRing chr R = 0 Q ℚHom R Q = L numer Q × ˙ L denom Q

Proof

Step Hyp Ref Expression
1 qqhval2.0 B = Base R
2 qqhval2.1 × ˙ = / r R
3 qqhval2.2 L = ℤRHom R
4 1 2 3 qqhval2 R DivRing chr R = 0 ℚHom R = q L numer q × ˙ L denom q
5 4 adantr R DivRing chr R = 0 Q ℚHom R = q L numer q × ˙ L denom q
6 simpr R DivRing chr R = 0 Q q = Q q = Q
7 6 fveq2d R DivRing chr R = 0 Q q = Q numer q = numer Q
8 7 fveq2d R DivRing chr R = 0 Q q = Q L numer q = L numer Q
9 6 fveq2d R DivRing chr R = 0 Q q = Q denom q = denom Q
10 9 fveq2d R DivRing chr R = 0 Q q = Q L denom q = L denom Q
11 8 10 oveq12d R DivRing chr R = 0 Q q = Q L numer q × ˙ L denom q = L numer Q × ˙ L denom Q
12 simpr R DivRing chr R = 0 Q Q
13 ovexd R DivRing chr R = 0 Q L numer Q × ˙ L denom Q V
14 5 11 12 13 fvmptd R DivRing chr R = 0 Q ℚHom R Q = L numer Q × ˙ L denom Q