Metamath Proof Explorer


Theorem qqh1

Description: The image of 1 by the QQHom homomorphism is the ring's unit. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B = Base R
qqhval2.1 × ˙ = / r R
qqhval2.2 L = ℤRHom R
Assertion qqh1 R DivRing chr R = 0 ℚHom R 1 = 1 R

Proof

Step Hyp Ref Expression
1 qqhval2.0 B = Base R
2 qqhval2.1 × ˙ = / r R
3 qqhval2.2 L = ℤRHom R
4 zssq
5 1z 1
6 4 5 sselii 1
7 1 2 3 qqhvval R DivRing chr R = 0 1 ℚHom R 1 = L numer 1 × ˙ L denom 1
8 6 7 mpan2 R DivRing chr R = 0 ℚHom R 1 = L numer 1 × ˙ L denom 1
9 gcd1 1 1 gcd 1 = 1
10 5 9 ax-mp 1 gcd 1 = 1
11 1div1e1 1 1 = 1
12 11 eqcomi 1 = 1 1
13 10 12 pm3.2i 1 gcd 1 = 1 1 = 1 1
14 1nn 1
15 qnumdenbi 1 1 1 1 gcd 1 = 1 1 = 1 1 numer 1 = 1 denom 1 = 1
16 6 5 14 15 mp3an 1 gcd 1 = 1 1 = 1 1 numer 1 = 1 denom 1 = 1
17 13 16 mpbi numer 1 = 1 denom 1 = 1
18 17 simpli numer 1 = 1
19 18 fveq2i L numer 1 = L 1
20 17 simpri denom 1 = 1
21 20 fveq2i L denom 1 = L 1
22 19 21 oveq12i L numer 1 × ˙ L denom 1 = L 1 × ˙ L 1
23 drngring R DivRing R Ring
24 eqid 1 R = 1 R
25 3 24 zrh1 R Ring L 1 = 1 R
26 25 25 oveq12d R Ring L 1 × ˙ L 1 = 1 R × ˙ 1 R
27 23 26 syl R DivRing L 1 × ˙ L 1 = 1 R × ˙ 1 R
28 1 24 ringidcl R Ring 1 R B
29 1 2 24 dvr1 R Ring 1 R B 1 R × ˙ 1 R = 1 R
30 23 28 29 syl2anc2 R DivRing 1 R × ˙ 1 R = 1 R
31 27 30 eqtrd R DivRing L 1 × ˙ L 1 = 1 R
32 22 31 eqtrid R DivRing L numer 1 × ˙ L denom 1 = 1 R
33 32 adantr R DivRing chr R = 0 L numer 1 × ˙ L denom 1 = 1 R
34 8 33 eqtrd R DivRing chr R = 0 ℚHom R 1 = 1 R