Metamath Proof Explorer


Theorem qqh1

Description: The image of 1 by the QQHom homomorphism is the ring unity. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B=BaseR
qqhval2.1 ×˙=/rR
qqhval2.2 L=ℤRHomR
Assertion qqh1 RDivRingchrR=0ℚHomR1=1R

Proof

Step Hyp Ref Expression
1 qqhval2.0 B=BaseR
2 qqhval2.1 ×˙=/rR
3 qqhval2.2 L=ℤRHomR
4 zssq
5 1z 1
6 4 5 sselii 1
7 1 2 3 qqhvval RDivRingchrR=01ℚHomR1=Lnumer1×˙Ldenom1
8 6 7 mpan2 RDivRingchrR=0ℚHomR1=Lnumer1×˙Ldenom1
9 gcd1 11gcd1=1
10 5 9 ax-mp 1gcd1=1
11 1div1e1 11=1
12 11 eqcomi 1=11
13 10 12 pm3.2i 1gcd1=11=11
14 1nn 1
15 qnumdenbi 1111gcd1=11=11numer1=1denom1=1
16 6 5 14 15 mp3an 1gcd1=11=11numer1=1denom1=1
17 13 16 mpbi numer1=1denom1=1
18 17 simpli numer1=1
19 18 fveq2i Lnumer1=L1
20 17 simpri denom1=1
21 20 fveq2i Ldenom1=L1
22 19 21 oveq12i Lnumer1×˙Ldenom1=L1×˙L1
23 drngring RDivRingRRing
24 eqid 1R=1R
25 3 24 zrh1 RRingL1=1R
26 25 25 oveq12d RRingL1×˙L1=1R×˙1R
27 23 26 syl RDivRingL1×˙L1=1R×˙1R
28 1 24 ringidcl RRing1RB
29 1 2 24 dvr1 RRing1RB1R×˙1R=1R
30 23 28 29 syl2anc2 RDivRing1R×˙1R=1R
31 27 30 eqtrd RDivRingL1×˙L1=1R
32 22 31 eqtrid RDivRingLnumer1×˙Ldenom1=1R
33 32 adantr RDivRingchrR=0Lnumer1×˙Ldenom1=1R
34 8 33 eqtrd RDivRingchrR=0ℚHomR1=1R