Metamath Proof Explorer


Theorem qqhf

Description: QQHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017)

Ref Expression
Hypotheses qqhval2.0 B=BaseR
qqhval2.1 ×˙=/rR
qqhval2.2 L=ℤRHomR
Assertion qqhf RDivRingchrR=0ℚHomR:B

Proof

Step Hyp Ref Expression
1 qqhval2.0 B=BaseR
2 qqhval2.1 ×˙=/rR
3 qqhval2.2 L=ℤRHomR
4 1 2 3 qqhval2 RDivRingchrR=0ℚHomR=qLnumerq×˙Ldenomq
5 drngring RDivRingRRing
6 5 adantr RDivRingchrR=0RRing
7 6 adantr RDivRingchrR=0qRRing
8 3 zrhrhm RRingLringRingHomR
9 zringbas =Basering
10 9 1 rhmf LringRingHomRL:B
11 7 8 10 3syl RDivRingchrR=0qL:B
12 qnumcl qnumerq
13 12 adantl RDivRingchrR=0qnumerq
14 11 13 ffvelcdmd RDivRingchrR=0qLnumerqB
15 simpll RDivRingchrR=0qRDivRing
16 qdencl qdenomq
17 16 adantl RDivRingchrR=0qdenomq
18 17 nnzd RDivRingchrR=0qdenomq
19 11 18 ffvelcdmd RDivRingchrR=0qLdenomqB
20 17 nnne0d RDivRingchrR=0qdenomq0
21 20 neneqd RDivRingchrR=0q¬denomq=0
22 fvex denomqV
23 22 elsn denomq0denomq=0
24 21 23 sylnibr RDivRingchrR=0q¬denomq0
25 eqid 0R=0R
26 1 3 25 zrhker RRingchrR=0L-10R=0
27 26 biimpa RRingchrR=0L-10R=0
28 5 27 sylan RDivRingchrR=0L-10R=0
29 28 adantr RDivRingchrR=0qL-10R=0
30 24 29 neleqtrrd RDivRingchrR=0q¬denomqL-10R
31 ffn L:BLFn
32 8 10 31 3syl RRingLFn
33 elpreima LFndenomqL-10RdenomqLdenomq0R
34 5 32 33 3syl RDivRingdenomqL-10RdenomqLdenomq0R
35 34 biimpar RDivRingdenomqLdenomq0RdenomqL-10R
36 35 expr RDivRingdenomqLdenomq0RdenomqL-10R
37 36 con3dimp RDivRingdenomq¬denomqL-10R¬Ldenomq0R
38 15 18 30 37 syl21anc RDivRingchrR=0q¬Ldenomq0R
39 fvex LdenomqV
40 39 elsn Ldenomq0RLdenomq=0R
41 38 40 sylnib RDivRingchrR=0q¬Ldenomq=0R
42 41 neqned RDivRingchrR=0qLdenomq0R
43 eqid UnitR=UnitR
44 1 43 25 drngunit RDivRingLdenomqUnitRLdenomqBLdenomq0R
45 44 biimpar RDivRingLdenomqBLdenomq0RLdenomqUnitR
46 15 19 42 45 syl12anc RDivRingchrR=0qLdenomqUnitR
47 1 43 2 dvrcl RRingLnumerqBLdenomqUnitRLnumerq×˙LdenomqB
48 7 14 46 47 syl3anc RDivRingchrR=0qLnumerq×˙LdenomqB
49 4 48 fmpt3d RDivRingchrR=0ℚHomR:B