Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|
2 |
|
qqhval2.1 |
|
3 |
|
qqhval2.2 |
|
4 |
1 2 3
|
qqhval2 |
|
5 |
|
drngring |
|
6 |
5
|
adantr |
|
7 |
6
|
adantr |
|
8 |
3
|
zrhrhm |
|
9 |
|
zringbas |
|
10 |
9 1
|
rhmf |
|
11 |
7 8 10
|
3syl |
|
12 |
|
qnumcl |
|
13 |
12
|
adantl |
|
14 |
11 13
|
ffvelrnd |
|
15 |
|
simpll |
|
16 |
|
qdencl |
|
17 |
16
|
adantl |
|
18 |
17
|
nnzd |
|
19 |
11 18
|
ffvelrnd |
|
20 |
17
|
nnne0d |
|
21 |
20
|
neneqd |
|
22 |
|
fvex |
|
23 |
22
|
elsn |
|
24 |
21 23
|
sylnibr |
|
25 |
|
eqid |
|
26 |
1 3 25
|
zrhker |
|
27 |
26
|
biimpa |
|
28 |
5 27
|
sylan |
|
29 |
28
|
adantr |
|
30 |
24 29
|
neleqtrrd |
|
31 |
|
ffn |
|
32 |
8 10 31
|
3syl |
|
33 |
|
elpreima |
|
34 |
5 32 33
|
3syl |
|
35 |
34
|
biimpar |
|
36 |
35
|
expr |
|
37 |
36
|
con3dimp |
|
38 |
15 18 30 37
|
syl21anc |
|
39 |
|
fvex |
|
40 |
39
|
elsn |
|
41 |
38 40
|
sylnib |
|
42 |
41
|
neqned |
|
43 |
|
eqid |
|
44 |
1 43 25
|
drngunit |
|
45 |
44
|
biimpar |
|
46 |
15 19 42 45
|
syl12anc |
|
47 |
1 43 2
|
dvrcl |
|
48 |
7 14 46 47
|
syl3anc |
|
49 |
4 48
|
fmpt3d |
|