Description: QQHom as a function. (Contributed by Thierry Arnoux, 28-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qqhval2.0 | |
|
qqhval2.1 | |
||
qqhval2.2 | |
||
Assertion | qqhf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qqhval2.0 | |
|
2 | qqhval2.1 | |
|
3 | qqhval2.2 | |
|
4 | 1 2 3 | qqhval2 | |
5 | drngring | |
|
6 | 5 | adantr | |
7 | 6 | adantr | |
8 | 3 | zrhrhm | |
9 | zringbas | |
|
10 | 9 1 | rhmf | |
11 | 7 8 10 | 3syl | |
12 | qnumcl | |
|
13 | 12 | adantl | |
14 | 11 13 | ffvelcdmd | |
15 | simpll | |
|
16 | qdencl | |
|
17 | 16 | adantl | |
18 | 17 | nnzd | |
19 | 11 18 | ffvelcdmd | |
20 | 17 | nnne0d | |
21 | 20 | neneqd | |
22 | fvex | |
|
23 | 22 | elsn | |
24 | 21 23 | sylnibr | |
25 | eqid | |
|
26 | 1 3 25 | zrhker | |
27 | 26 | biimpa | |
28 | 5 27 | sylan | |
29 | 28 | adantr | |
30 | 24 29 | neleqtrrd | |
31 | ffn | |
|
32 | 8 10 31 | 3syl | |
33 | elpreima | |
|
34 | 5 32 33 | 3syl | |
35 | 34 | biimpar | |
36 | 35 | expr | |
37 | 36 | con3dimp | |
38 | 15 18 30 37 | syl21anc | |
39 | fvex | |
|
40 | 39 | elsn | |
41 | 38 40 | sylnib | |
42 | 41 | neqned | |
43 | eqid | |
|
44 | 1 43 25 | drngunit | |
45 | 44 | biimpar | |
46 | 15 19 42 45 | syl12anc | |
47 | 1 43 2 | dvrcl | |
48 | 7 14 46 47 | syl3anc | |
49 | 4 48 | fmpt3d | |