| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
|
| 2 |
|
qqhval2.1 |
|
| 3 |
|
qqhval2.2 |
|
| 4 |
1 2 3
|
qqhval2 |
|
| 5 |
|
drngring |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
adantr |
|
| 8 |
3
|
zrhrhm |
|
| 9 |
|
zringbas |
|
| 10 |
9 1
|
rhmf |
|
| 11 |
7 8 10
|
3syl |
|
| 12 |
|
qnumcl |
|
| 13 |
12
|
adantl |
|
| 14 |
11 13
|
ffvelcdmd |
|
| 15 |
|
simpll |
|
| 16 |
|
qdencl |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
nnzd |
|
| 19 |
11 18
|
ffvelcdmd |
|
| 20 |
17
|
nnne0d |
|
| 21 |
20
|
neneqd |
|
| 22 |
|
fvex |
|
| 23 |
22
|
elsn |
|
| 24 |
21 23
|
sylnibr |
|
| 25 |
|
eqid |
|
| 26 |
1 3 25
|
zrhker |
|
| 27 |
26
|
biimpa |
|
| 28 |
5 27
|
sylan |
|
| 29 |
28
|
adantr |
|
| 30 |
24 29
|
neleqtrrd |
|
| 31 |
|
ffn |
|
| 32 |
8 10 31
|
3syl |
|
| 33 |
|
elpreima |
|
| 34 |
5 32 33
|
3syl |
|
| 35 |
34
|
biimpar |
|
| 36 |
35
|
expr |
|
| 37 |
36
|
con3dimp |
|
| 38 |
15 18 30 37
|
syl21anc |
|
| 39 |
|
fvex |
|
| 40 |
39
|
elsn |
|
| 41 |
38 40
|
sylnib |
|
| 42 |
41
|
neqned |
|
| 43 |
|
eqid |
|
| 44 |
1 43 25
|
drngunit |
|
| 45 |
44
|
biimpar |
|
| 46 |
15 19 42 45
|
syl12anc |
|
| 47 |
1 43 2
|
dvrcl |
|
| 48 |
7 14 46 47
|
syl3anc |
|
| 49 |
4 48
|
fmpt3d |
|