Metamath Proof Explorer


Theorem zrhker

Description: The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0 B = Base R
zrhker.1 L = ℤRHom R
zrhker.2 0 ˙ = 0 R
Assertion zrhker R Ring chr R = 0 L -1 0 ˙ = 0

Proof

Step Hyp Ref Expression
1 zrhker.0 B = Base R
2 zrhker.1 L = ℤRHom R
3 zrhker.2 0 ˙ = 0 R
4 1 2 3 zrhchr R Ring chr R = 0 L : 1-1 B
5 1 2 3 zrhf1ker R Ring L : 1-1 B L -1 0 ˙ = 0
6 4 5 bitrd R Ring chr R = 0 L -1 0 ˙ = 0