Metamath Proof Explorer


Theorem zrhker

Description: The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0 B=BaseR
zrhker.1 L=ℤRHomR
zrhker.2 0˙=0R
Assertion zrhker RRingchrR=0L-10˙=0

Proof

Step Hyp Ref Expression
1 zrhker.0 B=BaseR
2 zrhker.1 L=ℤRHomR
3 zrhker.2 0˙=0R
4 1 2 3 zrhchr RRingchrR=0L:1-1B
5 1 2 3 zrhf1ker RRingL:1-1BL-10˙=0
6 4 5 bitrd RRingchrR=0L-10˙=0