Metamath Proof Explorer


Theorem zrhker

Description: The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0 𝐵 = ( Base ‘ 𝑅 )
zrhker.1 𝐿 = ( ℤRHom ‘ 𝑅 )
zrhker.2 0 = ( 0g𝑅 )
Assertion zrhker ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ ( 𝐿 “ { 0 } ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 zrhker.0 𝐵 = ( Base ‘ 𝑅 )
2 zrhker.1 𝐿 = ( ℤRHom ‘ 𝑅 )
3 zrhker.2 0 = ( 0g𝑅 )
4 1 2 3 zrhchr ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ 𝐿 : ℤ –1-1𝐵 ) )
5 1 2 3 zrhf1ker ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1𝐵 ↔ ( 𝐿 “ { 0 } ) = { 0 } ) )
6 4 5 bitrd ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ ( 𝐿 “ { 0 } ) = { 0 } ) )