Description: The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhker.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| zrhker.1 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | ||
| zrhker.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | zrhker | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ ( ◡ 𝐿 “ { 0 } ) = { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhker.0 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | zrhker.1 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 3 | zrhker.2 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 2 3 | zrhchr | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ 𝐿 : ℤ –1-1→ 𝐵 ) ) |
| 5 | 1 2 3 | zrhf1ker | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1→ 𝐵 ↔ ( ◡ 𝐿 “ { 0 } ) = { 0 } ) ) |
| 6 | 4 5 | bitrd | ⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ ( ◡ 𝐿 “ { 0 } ) = { 0 } ) ) |