Step |
Hyp |
Ref |
Expression |
1 |
|
zrhker.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
zrhker.1 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
3 |
|
zrhker.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
6 |
2 4 5
|
zrhval2 |
⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
7 |
|
f1eq1 |
⊢ ( 𝐿 = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) → ( 𝐿 : ℤ –1-1→ 𝐵 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) : ℤ –1-1→ 𝐵 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1→ 𝐵 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) : ℤ –1-1→ 𝐵 ) ) |
9 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
10 |
1 5
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
13 |
1 11 4 12
|
odf1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 0 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) : ℤ –1-1→ 𝐵 ) ) |
14 |
9 10 13
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 0 ↔ ( 𝑥 ∈ ℤ ↦ ( 𝑥 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) : ℤ –1-1→ 𝐵 ) ) |
15 |
|
eqid |
⊢ ( chr ‘ 𝑅 ) = ( chr ‘ 𝑅 ) |
16 |
11 5 15
|
chrval |
⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = ( chr ‘ 𝑅 ) |
17 |
16
|
eqeq1i |
⊢ ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 0 ↔ ( chr ‘ 𝑅 ) = 0 ) |
18 |
17
|
a1i |
⊢ ( 𝑅 ∈ Ring → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 0 ↔ ( chr ‘ 𝑅 ) = 0 ) ) |
19 |
8 14 18
|
3bitr2rd |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ 𝐿 : ℤ –1-1→ 𝐵 ) ) |