| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhker.0 |
|- B = ( Base ` R ) |
| 2 |
|
zrhker.1 |
|- L = ( ZRHom ` R ) |
| 3 |
|
zrhker.2 |
|- .0. = ( 0g ` R ) |
| 4 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
2 4 5
|
zrhval2 |
|- ( R e. Ring -> L = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) ) |
| 7 |
|
f1eq1 |
|- ( L = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) -> ( L : ZZ -1-1-> B <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) ) |
| 8 |
6 7
|
syl |
|- ( R e. Ring -> ( L : ZZ -1-1-> B <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) ) |
| 9 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 10 |
1 5
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
| 11 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
| 12 |
|
eqid |
|- ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) |
| 13 |
1 11 4 12
|
odf1 |
|- ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) ) |
| 14 |
9 10 13
|
syl2anc |
|- ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) ) |
| 15 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
| 16 |
11 5 15
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = ( chr ` R ) |
| 17 |
16
|
eqeq1i |
|- ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( chr ` R ) = 0 ) |
| 18 |
17
|
a1i |
|- ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( chr ` R ) = 0 ) ) |
| 19 |
8 14 18
|
3bitr2rd |
|- ( R e. Ring -> ( ( chr ` R ) = 0 <-> L : ZZ -1-1-> B ) ) |