Metamath Proof Explorer


Theorem zrhchr

Description: The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0
|- B = ( Base ` R )
zrhker.1
|- L = ( ZRHom ` R )
zrhker.2
|- .0. = ( 0g ` R )
Assertion zrhchr
|- ( R e. Ring -> ( ( chr ` R ) = 0 <-> L : ZZ -1-1-> B ) )

Proof

Step Hyp Ref Expression
1 zrhker.0
 |-  B = ( Base ` R )
2 zrhker.1
 |-  L = ( ZRHom ` R )
3 zrhker.2
 |-  .0. = ( 0g ` R )
4 eqid
 |-  ( .g ` R ) = ( .g ` R )
5 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
6 2 4 5 zrhval2
 |-  ( R e. Ring -> L = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) )
7 f1eq1
 |-  ( L = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) -> ( L : ZZ -1-1-> B <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) )
8 6 7 syl
 |-  ( R e. Ring -> ( L : ZZ -1-1-> B <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) )
9 ringgrp
 |-  ( R e. Ring -> R e. Grp )
10 1 5 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. B )
11 eqid
 |-  ( od ` R ) = ( od ` R )
12 eqid
 |-  ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) = ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) )
13 1 11 4 12 odf1
 |-  ( ( R e. Grp /\ ( 1r ` R ) e. B ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) )
14 9 10 13 syl2anc
 |-  ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( x e. ZZ |-> ( x ( .g ` R ) ( 1r ` R ) ) ) : ZZ -1-1-> B ) )
15 eqid
 |-  ( chr ` R ) = ( chr ` R )
16 11 5 15 chrval
 |-  ( ( od ` R ) ` ( 1r ` R ) ) = ( chr ` R )
17 16 eqeq1i
 |-  ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( chr ` R ) = 0 )
18 17 a1i
 |-  ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) = 0 <-> ( chr ` R ) = 0 ) )
19 8 14 18 3bitr2rd
 |-  ( R e. Ring -> ( ( chr ` R ) = 0 <-> L : ZZ -1-1-> B ) )