Description: The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrhker.0 | |- B = ( Base ` R ) |
|
zrhker.1 | |- L = ( ZRHom ` R ) |
||
zrhker.2 | |- .0. = ( 0g ` R ) |
||
Assertion | zrhker | |- ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { .0. } ) = { 0 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.0 | |- B = ( Base ` R ) |
|
2 | zrhker.1 | |- L = ( ZRHom ` R ) |
|
3 | zrhker.2 | |- .0. = ( 0g ` R ) |
|
4 | 1 2 3 | zrhchr | |- ( R e. Ring -> ( ( chr ` R ) = 0 <-> L : ZZ -1-1-> B ) ) |
5 | 1 2 3 | zrhf1ker | |- ( R e. Ring -> ( L : ZZ -1-1-> B <-> ( `' L " { .0. } ) = { 0 } ) ) |
6 | 4 5 | bitrd | |- ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { .0. } ) = { 0 } ) ) |