Metamath Proof Explorer


Theorem zrhker

Description: The kernel of the homomorphism from the integers to a ring with characteristic 0. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0
|- B = ( Base ` R )
zrhker.1
|- L = ( ZRHom ` R )
zrhker.2
|- .0. = ( 0g ` R )
Assertion zrhker
|- ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { .0. } ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 zrhker.0
 |-  B = ( Base ` R )
2 zrhker.1
 |-  L = ( ZRHom ` R )
3 zrhker.2
 |-  .0. = ( 0g ` R )
4 1 2 3 zrhchr
 |-  ( R e. Ring -> ( ( chr ` R ) = 0 <-> L : ZZ -1-1-> B ) )
5 1 2 3 zrhf1ker
 |-  ( R e. Ring -> ( L : ZZ -1-1-> B <-> ( `' L " { .0. } ) = { 0 } ) )
6 4 5 bitrd
 |-  ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { .0. } ) = { 0 } ) )