Step |
Hyp |
Ref |
Expression |
1 |
|
zrhker.0 |
|- B = ( Base ` R ) |
2 |
|
zrhker.1 |
|- L = ( ZRHom ` R ) |
3 |
|
zrhker.2 |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
1 4 5
|
isdrng |
|- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) ) |
7 |
6
|
simprbi |
|- ( R e. DivRing -> ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) |
8 |
7
|
imaeq2d |
|- ( R e. DivRing -> ( `' L " ( Unit ` R ) ) = ( `' L " ( B \ { ( 0g ` R ) } ) ) ) |
9 |
8
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( `' L " ( B \ { ( 0g ` R ) } ) ) ) |
10 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
11 |
2
|
zrhrhm |
|- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
12 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
13 |
12 1
|
rhmf |
|- ( L e. ( ZZring RingHom R ) -> L : ZZ --> B ) |
14 |
|
ffun |
|- ( L : ZZ --> B -> Fun L ) |
15 |
11 13 14
|
3syl |
|- ( R e. Ring -> Fun L ) |
16 |
|
difpreima |
|- ( Fun L -> ( `' L " ( B \ { ( 0g ` R ) } ) ) = ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) ) |
17 |
10 15 16
|
3syl |
|- ( R e. DivRing -> ( `' L " ( B \ { ( 0g ` R ) } ) ) = ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) ) |
18 |
17
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( B \ { ( 0g ` R ) } ) ) = ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) ) |
19 |
|
fimacnv |
|- ( L : ZZ --> B -> ( `' L " B ) = ZZ ) |
20 |
10 11 13 19
|
4syl |
|- ( R e. DivRing -> ( `' L " B ) = ZZ ) |
21 |
20
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " B ) = ZZ ) |
22 |
1 2 5
|
zrhker |
|- ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { ( 0g ` R ) } ) = { 0 } ) ) |
23 |
22
|
biimpa |
|- ( ( R e. Ring /\ ( chr ` R ) = 0 ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } ) |
24 |
10 23
|
sylan |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } ) |
25 |
21 24
|
difeq12d |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) = ( ZZ \ { 0 } ) ) |
26 |
9 18 25
|
3eqtrd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) |