Metamath Proof Explorer


Theorem zrhunitpreima

Description: The preimage by ZRHom of the unit of a division ring is ( ZZ \ { 0 } ) . (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses zrhker.0
|- B = ( Base ` R )
zrhker.1
|- L = ( ZRHom ` R )
zrhker.2
|- .0. = ( 0g ` R )
Assertion zrhunitpreima
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) )

Proof

Step Hyp Ref Expression
1 zrhker.0
 |-  B = ( Base ` R )
2 zrhker.1
 |-  L = ( ZRHom ` R )
3 zrhker.2
 |-  .0. = ( 0g ` R )
4 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 1 4 5 isdrng
 |-  ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) ) )
7 6 simprbi
 |-  ( R e. DivRing -> ( Unit ` R ) = ( B \ { ( 0g ` R ) } ) )
8 7 imaeq2d
 |-  ( R e. DivRing -> ( `' L " ( Unit ` R ) ) = ( `' L " ( B \ { ( 0g ` R ) } ) ) )
9 8 adantr
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( `' L " ( B \ { ( 0g ` R ) } ) ) )
10 drngring
 |-  ( R e. DivRing -> R e. Ring )
11 2 zrhrhm
 |-  ( R e. Ring -> L e. ( ZZring RingHom R ) )
12 zringbas
 |-  ZZ = ( Base ` ZZring )
13 12 1 rhmf
 |-  ( L e. ( ZZring RingHom R ) -> L : ZZ --> B )
14 ffun
 |-  ( L : ZZ --> B -> Fun L )
15 11 13 14 3syl
 |-  ( R e. Ring -> Fun L )
16 difpreima
 |-  ( Fun L -> ( `' L " ( B \ { ( 0g ` R ) } ) ) = ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) )
17 10 15 16 3syl
 |-  ( R e. DivRing -> ( `' L " ( B \ { ( 0g ` R ) } ) ) = ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) )
18 17 adantr
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( B \ { ( 0g ` R ) } ) ) = ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) )
19 fimacnv
 |-  ( L : ZZ --> B -> ( `' L " B ) = ZZ )
20 10 11 13 19 4syl
 |-  ( R e. DivRing -> ( `' L " B ) = ZZ )
21 20 adantr
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " B ) = ZZ )
22 1 2 5 zrhker
 |-  ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { ( 0g ` R ) } ) = { 0 } ) )
23 22 biimpa
 |-  ( ( R e. Ring /\ ( chr ` R ) = 0 ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } )
24 10 23 sylan
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } )
25 21 24 difeq12d
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( `' L " B ) \ ( `' L " { ( 0g ` R ) } ) ) = ( ZZ \ { 0 } ) )
26 9 18 25 3eqtrd
 |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) )