Metamath Proof Explorer


Theorem zrhunitpreima

Description: The preimage by ZRHom of the units of a division ring is ( ZZ \ { 0 } ) . (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses zrhker.0 B=BaseR
zrhker.1 L=ℤRHomR
zrhker.2 0˙=0R
Assertion zrhunitpreima RDivRingchrR=0L-1UnitR=0

Proof

Step Hyp Ref Expression
1 zrhker.0 B=BaseR
2 zrhker.1 L=ℤRHomR
3 zrhker.2 0˙=0R
4 eqid UnitR=UnitR
5 eqid 0R=0R
6 1 4 5 isdrng RDivRingRRingUnitR=B0R
7 6 simprbi RDivRingUnitR=B0R
8 7 imaeq2d RDivRingL-1UnitR=L-1B0R
9 8 adantr RDivRingchrR=0L-1UnitR=L-1B0R
10 drngring RDivRingRRing
11 2 zrhrhm RRingLringRingHomR
12 zringbas =Basering
13 12 1 rhmf LringRingHomRL:B
14 ffun L:BFunL
15 11 13 14 3syl RRingFunL
16 difpreima FunLL-1B0R=L-1BL-10R
17 10 15 16 3syl RDivRingL-1B0R=L-1BL-10R
18 17 adantr RDivRingchrR=0L-1B0R=L-1BL-10R
19 fimacnv L:BL-1B=
20 10 11 13 19 4syl RDivRingL-1B=
21 20 adantr RDivRingchrR=0L-1B=
22 1 2 5 zrhker RRingchrR=0L-10R=0
23 22 biimpa RRingchrR=0L-10R=0
24 10 23 sylan RDivRingchrR=0L-10R=0
25 21 24 difeq12d RDivRingchrR=0L-1BL-10R=0
26 9 18 25 3eqtrd RDivRingchrR=0L-1UnitR=0