Description: The preimage by ZRHom of the units of a division ring is ( ZZ \ { 0 } ) . (Contributed by Thierry Arnoux, 22-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zrhker.0 | |
|
zrhker.1 | |
||
zrhker.2 | |
||
Assertion | zrhunitpreima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhker.0 | |
|
2 | zrhker.1 | |
|
3 | zrhker.2 | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 4 5 | isdrng | |
7 | 6 | simprbi | |
8 | 7 | imaeq2d | |
9 | 8 | adantr | |
10 | drngring | |
|
11 | 2 | zrhrhm | |
12 | zringbas | |
|
13 | 12 1 | rhmf | |
14 | ffun | |
|
15 | 11 13 14 | 3syl | |
16 | difpreima | |
|
17 | 10 15 16 | 3syl | |
18 | 17 | adantr | |
19 | fimacnv | |
|
20 | 10 11 13 19 | 4syl | |
21 | 20 | adantr | |
22 | 1 2 5 | zrhker | |
23 | 22 | biimpa | |
24 | 10 23 | sylan | |
25 | 21 24 | difeq12d | |
26 | 9 18 25 | 3eqtrd | |