Metamath Proof Explorer


Theorem zrhunitpreima

Description: The preimage by ZRHom of the unit of a division ring is ( ZZ \ { 0 } ) . (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses zrhker.0 B = Base R
zrhker.1 L = ℤRHom R
zrhker.2 0 ˙ = 0 R
Assertion zrhunitpreima R DivRing chr R = 0 L -1 Unit R = 0

Proof

Step Hyp Ref Expression
1 zrhker.0 B = Base R
2 zrhker.1 L = ℤRHom R
3 zrhker.2 0 ˙ = 0 R
4 eqid Unit R = Unit R
5 eqid 0 R = 0 R
6 1 4 5 isdrng R DivRing R Ring Unit R = B 0 R
7 6 simprbi R DivRing Unit R = B 0 R
8 7 imaeq2d R DivRing L -1 Unit R = L -1 B 0 R
9 8 adantr R DivRing chr R = 0 L -1 Unit R = L -1 B 0 R
10 drngring R DivRing R Ring
11 2 zrhrhm R Ring L ring RingHom R
12 zringbas = Base ring
13 12 1 rhmf L ring RingHom R L : B
14 ffun L : B Fun L
15 11 13 14 3syl R Ring Fun L
16 difpreima Fun L L -1 B 0 R = L -1 B L -1 0 R
17 10 15 16 3syl R DivRing L -1 B 0 R = L -1 B L -1 0 R
18 17 adantr R DivRing chr R = 0 L -1 B 0 R = L -1 B L -1 0 R
19 fimacnv L : B L -1 B =
20 10 11 13 19 4syl R DivRing L -1 B =
21 20 adantr R DivRing chr R = 0 L -1 B =
22 1 2 5 zrhker R Ring chr R = 0 L -1 0 R = 0
23 22 biimpa R Ring chr R = 0 L -1 0 R = 0
24 10 23 sylan R DivRing chr R = 0 L -1 0 R = 0
25 21 24 difeq12d R DivRing chr R = 0 L -1 B L -1 0 R = 0
26 9 18 25 3eqtrd R DivRing chr R = 0 L -1 Unit R = 0