Metamath Proof Explorer


Theorem difpreima

Description: Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016)

Ref Expression
Assertion difpreima FunFF-1AB=F-1AF-1B

Proof

Step Hyp Ref Expression
1 funcnvcnv FunFFunF-1-1
2 imadif FunF-1-1F-1AB=F-1AF-1B
3 1 2 syl FunFF-1AB=F-1AF-1B