| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhker.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
zrhker.1 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 3 |
|
zrhker.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 6 |
1 4 5
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 8 |
7
|
imaeq2d |
⊢ ( 𝑅 ∈ DivRing → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ◡ 𝐿 “ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ◡ 𝐿 “ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 10 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 11 |
2
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 12 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 13 |
12 1
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 14 |
|
ffun |
⊢ ( 𝐿 : ℤ ⟶ 𝐵 → Fun 𝐿 ) |
| 15 |
11 13 14
|
3syl |
⊢ ( 𝑅 ∈ Ring → Fun 𝐿 ) |
| 16 |
|
difpreima |
⊢ ( Fun 𝐿 → ( ◡ 𝐿 “ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( ◡ 𝐿 “ 𝐵 ) ∖ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 17 |
10 15 16
|
3syl |
⊢ ( 𝑅 ∈ DivRing → ( ◡ 𝐿 “ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( ◡ 𝐿 “ 𝐵 ) ∖ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ ( 𝐵 ∖ { ( 0g ‘ 𝑅 ) } ) ) = ( ( ◡ 𝐿 “ 𝐵 ) ∖ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 19 |
|
fimacnv |
⊢ ( 𝐿 : ℤ ⟶ 𝐵 → ( ◡ 𝐿 “ 𝐵 ) = ℤ ) |
| 20 |
10 11 13 19
|
4syl |
⊢ ( 𝑅 ∈ DivRing → ( ◡ 𝐿 “ 𝐵 ) = ℤ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ 𝐵 ) = ℤ ) |
| 22 |
1 2 5
|
zrhker |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) ) |
| 23 |
22
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) |
| 24 |
10 23
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) |
| 25 |
21 24
|
difeq12d |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ◡ 𝐿 “ 𝐵 ) ∖ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) = ( ℤ ∖ { 0 } ) ) |
| 26 |
9 18 25
|
3eqtrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) ) |