| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zrhker.0 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | zrhker.1 | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 3 |  | zrhker.2 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 6 | 1 4 5 | isdrng | ⊢ ( 𝑅  ∈  DivRing  ↔  ( 𝑅  ∈  Ring  ∧  ( Unit ‘ 𝑅 )  =  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝑅  ∈  DivRing  →  ( Unit ‘ 𝑅 )  =  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 8 | 7 | imaeq2d | ⊢ ( 𝑅  ∈  DivRing  →  ( ◡ 𝐿  “  ( Unit ‘ 𝑅 ) )  =  ( ◡ 𝐿  “  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ◡ 𝐿  “  ( Unit ‘ 𝑅 ) )  =  ( ◡ 𝐿  “  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 10 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 11 | 2 | zrhrhm | ⊢ ( 𝑅  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  𝑅 ) ) | 
						
							| 12 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 13 | 12 1 | rhmf | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑅 )  →  𝐿 : ℤ ⟶ 𝐵 ) | 
						
							| 14 |  | ffun | ⊢ ( 𝐿 : ℤ ⟶ 𝐵  →  Fun  𝐿 ) | 
						
							| 15 | 11 13 14 | 3syl | ⊢ ( 𝑅  ∈  Ring  →  Fun  𝐿 ) | 
						
							| 16 |  | difpreima | ⊢ ( Fun  𝐿  →  ( ◡ 𝐿  “  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) )  =  ( ( ◡ 𝐿  “  𝐵 )  ∖  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 17 | 10 15 16 | 3syl | ⊢ ( 𝑅  ∈  DivRing  →  ( ◡ 𝐿  “  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) )  =  ( ( ◡ 𝐿  “  𝐵 )  ∖  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ◡ 𝐿  “  ( 𝐵  ∖  { ( 0g ‘ 𝑅 ) } ) )  =  ( ( ◡ 𝐿  “  𝐵 )  ∖  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } ) ) ) | 
						
							| 19 |  | fimacnv | ⊢ ( 𝐿 : ℤ ⟶ 𝐵  →  ( ◡ 𝐿  “  𝐵 )  =  ℤ ) | 
						
							| 20 | 10 11 13 19 | 4syl | ⊢ ( 𝑅  ∈  DivRing  →  ( ◡ 𝐿  “  𝐵 )  =  ℤ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ◡ 𝐿  “  𝐵 )  =  ℤ ) | 
						
							| 22 | 1 2 5 | zrhker | ⊢ ( 𝑅  ∈  Ring  →  ( ( chr ‘ 𝑅 )  =  0  ↔  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } )  =  { 0 } ) ) | 
						
							| 23 | 22 | biimpa | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } )  =  { 0 } ) | 
						
							| 24 | 10 23 | sylan | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } )  =  { 0 } ) | 
						
							| 25 | 21 24 | difeq12d | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ( ◡ 𝐿  “  𝐵 )  ∖  ( ◡ 𝐿  “  { ( 0g ‘ 𝑅 ) } ) )  =  ( ℤ  ∖  { 0 } ) ) | 
						
							| 26 | 9 18 25 | 3eqtrd | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ◡ 𝐿  “  ( Unit ‘ 𝑅 ) )  =  ( ℤ  ∖  { 0 } ) ) |