| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhker.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
zrhker.1 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 3 |
|
zrhker.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑅 ∈ DivRing ) |
| 5 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 6 |
2
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 7 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 8 |
7 1
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 9 |
|
ffn |
⊢ ( 𝐿 : ℤ ⟶ 𝐵 → 𝐿 Fn ℤ ) |
| 10 |
6 8 9
|
3syl |
⊢ ( 𝑅 ∈ Ring → 𝐿 Fn ℤ ) |
| 11 |
4 5 10
|
3syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝐿 Fn ℤ ) |
| 12 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑀 ∈ ℤ ) |
| 13 |
|
elsng |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ∈ { 0 } ↔ 𝑀 = 0 ) ) |
| 14 |
13
|
necon3bbid |
⊢ ( 𝑀 ∈ ℤ → ( ¬ 𝑀 ∈ { 0 } ↔ 𝑀 ≠ 0 ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ¬ 𝑀 ∈ { 0 } ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ¬ 𝑀 ∈ { 0 } ) |
| 17 |
12 16
|
eldifd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑀 ∈ ( ℤ ∖ { 0 } ) ) |
| 18 |
1 2 3
|
zrhunitpreima |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) ) |
| 20 |
17 19
|
eleqtrrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑀 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ) |
| 21 |
|
elpreima |
⊢ ( 𝐿 Fn ℤ → ( 𝑀 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝐿 ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) ) |
| 22 |
21
|
simplbda |
⊢ ( ( 𝐿 Fn ℤ ∧ 𝑀 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ) → ( 𝐿 ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 23 |
11 20 22
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( 𝐿 ‘ 𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) |