Metamath Proof Explorer


Theorem elzrhunit

Description: Condition for the image by ZRHom to be a unit. (Contributed by Thierry Arnoux, 30-Oct-2017)

Ref Expression
Hypotheses zrhker.0 𝐵 = ( Base ‘ 𝑅 )
zrhker.1 𝐿 = ( ℤRHom ‘ 𝑅 )
zrhker.2 0 = ( 0g𝑅 )
Assertion elzrhunit ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( 𝐿𝑀 ) ∈ ( Unit ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 zrhker.0 𝐵 = ( Base ‘ 𝑅 )
2 zrhker.1 𝐿 = ( ℤRHom ‘ 𝑅 )
3 zrhker.2 0 = ( 0g𝑅 )
4 simpll ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑅 ∈ DivRing )
5 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
6 2 zrhrhm ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) )
7 zringbas ℤ = ( Base ‘ ℤring )
8 7 1 rhmf ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ 𝐵 )
9 ffn ( 𝐿 : ℤ ⟶ 𝐵𝐿 Fn ℤ )
10 6 8 9 3syl ( 𝑅 ∈ Ring → 𝐿 Fn ℤ )
11 4 5 10 3syl ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝐿 Fn ℤ )
12 simprl ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑀 ∈ ℤ )
13 elsng ( 𝑀 ∈ ℤ → ( 𝑀 ∈ { 0 } ↔ 𝑀 = 0 ) )
14 13 necon3bbid ( 𝑀 ∈ ℤ → ( ¬ 𝑀 ∈ { 0 } ↔ 𝑀 ≠ 0 ) )
15 14 biimpar ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ¬ 𝑀 ∈ { 0 } )
16 15 adantl ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ¬ 𝑀 ∈ { 0 } )
17 12 16 eldifd ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑀 ∈ ( ℤ ∖ { 0 } ) )
18 1 2 3 zrhunitpreima ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) )
19 18 adantr ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) )
20 17 19 eleqtrrd ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → 𝑀 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) )
21 elpreima ( 𝐿 Fn ℤ → ( 𝑀 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝐿𝑀 ) ∈ ( Unit ‘ 𝑅 ) ) ) )
22 21 simplbda ( ( 𝐿 Fn ℤ ∧ 𝑀 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ) → ( 𝐿𝑀 ) ∈ ( Unit ‘ 𝑅 ) )
23 11 20 22 syl2anc ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ) → ( 𝐿𝑀 ) ∈ ( Unit ‘ 𝑅 ) )