Metamath Proof Explorer


Theorem elzdif0

Description: Lemma for qqhval2 . (Contributed by Thierry Arnoux, 29-Oct-2017)

Ref Expression
Assertion elzdif0 ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) )

Proof

Step Hyp Ref Expression
1 eldifsnneq ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ¬ 𝑀 = 0 )
2 eldifi ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → 𝑀 ∈ ℤ )
3 elz ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℝ ∧ ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) )
4 2 3 sylib ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 ∈ ℝ ∧ ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) )
5 4 simprd ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) )
6 3orass ( ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ↔ ( 𝑀 = 0 ∨ ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) )
7 5 6 sylib ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 = 0 ∨ ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) )
8 orel1 ( ¬ 𝑀 = 0 → ( ( 𝑀 = 0 ∨ ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) → ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) )
9 1 7 8 sylc ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) )