| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsnneq |
⊢ ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ¬ 𝑀 = 0 ) |
| 2 |
|
eldifi |
⊢ ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → 𝑀 ∈ ℤ ) |
| 3 |
|
elz |
⊢ ( 𝑀 ∈ ℤ ↔ ( 𝑀 ∈ ℝ ∧ ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) ) |
| 4 |
2 3
|
sylib |
⊢ ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 ∈ ℝ ∧ ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) ) |
| 5 |
4
|
simprd |
⊢ ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) |
| 6 |
|
3orass |
⊢ ( ( 𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ↔ ( 𝑀 = 0 ∨ ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) ) |
| 7 |
5 6
|
sylib |
⊢ ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 = 0 ∨ ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) ) |
| 8 |
|
orel1 |
⊢ ( ¬ 𝑀 = 0 → ( ( 𝑀 = 0 ∨ ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) → ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) ) |
| 9 |
1 7 8
|
sylc |
⊢ ( 𝑀 ∈ ( ℤ ∖ { 0 } ) → ( 𝑀 ∈ ℕ ∨ - 𝑀 ∈ ℕ ) ) |