| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifsnneq |
|- ( M e. ( ZZ \ { 0 } ) -> -. M = 0 ) |
| 2 |
|
eldifi |
|- ( M e. ( ZZ \ { 0 } ) -> M e. ZZ ) |
| 3 |
|
elz |
|- ( M e. ZZ <-> ( M e. RR /\ ( M = 0 \/ M e. NN \/ -u M e. NN ) ) ) |
| 4 |
2 3
|
sylib |
|- ( M e. ( ZZ \ { 0 } ) -> ( M e. RR /\ ( M = 0 \/ M e. NN \/ -u M e. NN ) ) ) |
| 5 |
4
|
simprd |
|- ( M e. ( ZZ \ { 0 } ) -> ( M = 0 \/ M e. NN \/ -u M e. NN ) ) |
| 6 |
|
3orass |
|- ( ( M = 0 \/ M e. NN \/ -u M e. NN ) <-> ( M = 0 \/ ( M e. NN \/ -u M e. NN ) ) ) |
| 7 |
5 6
|
sylib |
|- ( M e. ( ZZ \ { 0 } ) -> ( M = 0 \/ ( M e. NN \/ -u M e. NN ) ) ) |
| 8 |
|
orel1 |
|- ( -. M = 0 -> ( ( M = 0 \/ ( M e. NN \/ -u M e. NN ) ) -> ( M e. NN \/ -u M e. NN ) ) ) |
| 9 |
1 7 8
|
sylc |
|- ( M e. ( ZZ \ { 0 } ) -> ( M e. NN \/ -u M e. NN ) ) |