Metamath Proof Explorer


Theorem elzdif0

Description: Lemma for qqhval2 . (Contributed by Thierry Arnoux, 29-Oct-2017)

Ref Expression
Assertion elzdif0
|- ( M e. ( ZZ \ { 0 } ) -> ( M e. NN \/ -u M e. NN ) )

Proof

Step Hyp Ref Expression
1 eldifsnneq
 |-  ( M e. ( ZZ \ { 0 } ) -> -. M = 0 )
2 eldifi
 |-  ( M e. ( ZZ \ { 0 } ) -> M e. ZZ )
3 elz
 |-  ( M e. ZZ <-> ( M e. RR /\ ( M = 0 \/ M e. NN \/ -u M e. NN ) ) )
4 2 3 sylib
 |-  ( M e. ( ZZ \ { 0 } ) -> ( M e. RR /\ ( M = 0 \/ M e. NN \/ -u M e. NN ) ) )
5 4 simprd
 |-  ( M e. ( ZZ \ { 0 } ) -> ( M = 0 \/ M e. NN \/ -u M e. NN ) )
6 3orass
 |-  ( ( M = 0 \/ M e. NN \/ -u M e. NN ) <-> ( M = 0 \/ ( M e. NN \/ -u M e. NN ) ) )
7 5 6 sylib
 |-  ( M e. ( ZZ \ { 0 } ) -> ( M = 0 \/ ( M e. NN \/ -u M e. NN ) ) )
8 orel1
 |-  ( -. M = 0 -> ( ( M = 0 \/ ( M e. NN \/ -u M e. NN ) ) -> ( M e. NN \/ -u M e. NN ) ) )
9 1 7 8 sylc
 |-  ( M e. ( ZZ \ { 0 } ) -> ( M e. NN \/ -u M e. NN ) )