Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology and algebraic structures
Canonical embedding of the field of the rational numbers into a division ring
elzdif0
Next ⟩
qqhval2lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
elzdif0
Description:
Lemma for
qqhval2
.
(Contributed by
Thierry Arnoux
, 29-Oct-2017)
Ref
Expression
Assertion
elzdif0
⊢
M
∈
ℤ
∖
0
→
M
∈
ℕ
∨
−
M
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
eldifsnneq
⊢
M
∈
ℤ
∖
0
→
¬
M
=
0
2
eldifi
⊢
M
∈
ℤ
∖
0
→
M
∈
ℤ
3
elz
⊢
M
∈
ℤ
↔
M
∈
ℝ
∧
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
4
2
3
sylib
⊢
M
∈
ℤ
∖
0
→
M
∈
ℝ
∧
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
5
4
simprd
⊢
M
∈
ℤ
∖
0
→
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
6
3orass
⊢
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
↔
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
7
5
6
sylib
⊢
M
∈
ℤ
∖
0
→
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
8
orel1
⊢
¬
M
=
0
→
M
=
0
∨
M
∈
ℕ
∨
−
M
∈
ℕ
→
M
∈
ℕ
∨
−
M
∈
ℕ
9
1
7
8
sylc
⊢
M
∈
ℤ
∖
0
→
M
∈
ℕ
∨
−
M
∈
ℕ