Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|
2 |
|
qqhval2.1 |
|
3 |
|
qqhval2.2 |
|
4 |
|
drngring |
|
5 |
3
|
zrhrhm |
|
6 |
4 5
|
syl |
|
7 |
6
|
ad2antrr |
|
8 |
|
simpr1 |
|
9 |
|
simpr2 |
|
10 |
8 9
|
gcdcld |
|
11 |
10
|
nn0zd |
|
12 |
|
simpr3 |
|
13 |
|
gcdeq0 |
|
14 |
13
|
simplbda |
|
15 |
14
|
ex |
|
16 |
15
|
necon3d |
|
17 |
16
|
imp |
|
18 |
8 9 12 17
|
syl21anc |
|
19 |
|
gcddvds |
|
20 |
8 9 19
|
syl2anc |
|
21 |
20
|
simpld |
|
22 |
|
dvdsval2 |
|
23 |
22
|
biimpa |
|
24 |
11 18 8 21 23
|
syl31anc |
|
25 |
20
|
simprd |
|
26 |
|
dvdsval2 |
|
27 |
26
|
biimpa |
|
28 |
11 18 9 25 27
|
syl31anc |
|
29 |
|
zringbas |
|
30 |
29 1
|
rhmf |
|
31 |
7 30
|
syl |
|
32 |
31 28
|
ffvelrnd |
|
33 |
31
|
ffnd |
|
34 |
9
|
zcnd |
|
35 |
11
|
zcnd |
|
36 |
34 35 12 18
|
divne0d |
|
37 |
|
ovex |
|
38 |
37
|
elsn |
|
39 |
38
|
necon3bbii |
|
40 |
36 39
|
sylibr |
|
41 |
4
|
ad2antrr |
|
42 |
|
simplr |
|
43 |
|
eqid |
|
44 |
1 3 43
|
zrhker |
|
45 |
44
|
biimpa |
|
46 |
41 42 45
|
syl2anc |
|
47 |
40 46
|
neleqtrrd |
|
48 |
|
elpreima |
|
49 |
48
|
baibd |
|
50 |
49
|
biimprd |
|
51 |
50
|
con3dimp |
|
52 |
|
fvex |
|
53 |
52
|
elsn |
|
54 |
53
|
necon3bbii |
|
55 |
51 54
|
sylib |
|
56 |
33 28 47 55
|
syl21anc |
|
57 |
|
eqid |
|
58 |
1 57 43
|
drngunit |
|
59 |
58
|
ad2antrr |
|
60 |
32 56 59
|
mpbir2and |
|
61 |
31 11
|
ffvelrnd |
|
62 |
|
ovex |
|
63 |
62
|
elsn |
|
64 |
63
|
necon3bbii |
|
65 |
18 64
|
sylibr |
|
66 |
65 46
|
neleqtrrd |
|
67 |
|
elpreima |
|
68 |
67
|
baibd |
|
69 |
68
|
biimprd |
|
70 |
69
|
con3dimp |
|
71 |
|
fvex |
|
72 |
71
|
elsn |
|
73 |
72
|
necon3bbii |
|
74 |
70 73
|
sylib |
|
75 |
33 11 66 74
|
syl21anc |
|
76 |
1 57 43
|
drngunit |
|
77 |
76
|
ad2antrr |
|
78 |
61 75 77
|
mpbir2and |
|
79 |
|
zringmulr |
|
80 |
57 29 2 79
|
rhmdvd |
|
81 |
7 24 28 11 60 78 80
|
syl132anc |
|
82 |
|
divnumden |
|
83 |
8 82
|
sylan |
|
84 |
83
|
simpld |
|
85 |
84
|
eqcomd |
|
86 |
85
|
fveq2d |
|
87 |
83
|
simprd |
|
88 |
87
|
eqcomd |
|
89 |
88
|
fveq2d |
|
90 |
86 89
|
oveq12d |
|
91 |
24
|
adantr |
|
92 |
91
|
zcnd |
|
93 |
92
|
mulm1d |
|
94 |
|
neg1cn |
|
95 |
94
|
a1i |
|
96 |
95 92
|
mulcomd |
|
97 |
93 96
|
eqtr3d |
|
98 |
97
|
fveq2d |
|
99 |
28
|
adantr |
|
100 |
99
|
zcnd |
|
101 |
100
|
mulm1d |
|
102 |
95 100
|
mulcomd |
|
103 |
101 102
|
eqtr3d |
|
104 |
103
|
fveq2d |
|
105 |
98 104
|
oveq12d |
|
106 |
8
|
adantr |
|
107 |
9
|
adantr |
|
108 |
|
simpr |
|
109 |
|
divnumden2 |
|
110 |
106 107 108 109
|
syl3anc |
|
111 |
110
|
simpld |
|
112 |
111
|
fveq2d |
|
113 |
110
|
simprd |
|
114 |
113
|
fveq2d |
|
115 |
112 114
|
oveq12d |
|
116 |
7
|
adantr |
|
117 |
|
1zzd |
|
118 |
117
|
znegcld |
|
119 |
60
|
adantr |
|
120 |
|
neg1z |
|
121 |
|
ax-1cn |
|
122 |
121
|
absnegi |
|
123 |
|
abs1 |
|
124 |
122 123
|
eqtri |
|
125 |
|
zringunit |
|
126 |
120 124 125
|
mpbir2an |
|
127 |
126
|
a1i |
|
128 |
|
elrhmunit |
|
129 |
116 127 128
|
syl2anc |
|
130 |
57 29 2 79
|
rhmdvd |
|
131 |
116 91 99 118 119 129 130
|
syl132anc |
|
132 |
105 115 131
|
3eqtr4rd |
|
133 |
|
simp3 |
|
134 |
133
|
neneqd |
|
135 |
|
simp2 |
|
136 |
|
elz |
|
137 |
135 136
|
sylib |
|
138 |
137
|
simprd |
|
139 |
|
3orass |
|
140 |
138 139
|
sylib |
|
141 |
|
orel1 |
|
142 |
134 140 141
|
sylc |
|
143 |
142
|
adantl |
|
144 |
90 132 143
|
mpjaodan |
|
145 |
8
|
zcnd |
|
146 |
145 35 18
|
divcan1d |
|
147 |
146
|
fveq2d |
|
148 |
34 35 18
|
divcan1d |
|
149 |
148
|
fveq2d |
|
150 |
147 149
|
oveq12d |
|
151 |
81 144 150
|
3eqtr3d |
|