| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
|
| 2 |
|
qqhval2.1 |
|
| 3 |
|
qqhval2.2 |
|
| 4 |
|
drngring |
|
| 5 |
3
|
zrhrhm |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
|
simpr1 |
|
| 9 |
|
simpr2 |
|
| 10 |
8 9
|
gcdcld |
|
| 11 |
10
|
nn0zd |
|
| 12 |
|
simpr3 |
|
| 13 |
|
gcdeq0 |
|
| 14 |
13
|
simplbda |
|
| 15 |
14
|
ex |
|
| 16 |
15
|
necon3d |
|
| 17 |
16
|
imp |
|
| 18 |
8 9 12 17
|
syl21anc |
|
| 19 |
|
gcddvds |
|
| 20 |
8 9 19
|
syl2anc |
|
| 21 |
20
|
simpld |
|
| 22 |
|
dvdsval2 |
|
| 23 |
22
|
biimpa |
|
| 24 |
11 18 8 21 23
|
syl31anc |
|
| 25 |
20
|
simprd |
|
| 26 |
|
dvdsval2 |
|
| 27 |
26
|
biimpa |
|
| 28 |
11 18 9 25 27
|
syl31anc |
|
| 29 |
|
zringbas |
|
| 30 |
29 1
|
rhmf |
|
| 31 |
7 30
|
syl |
|
| 32 |
31 28
|
ffvelcdmd |
|
| 33 |
31
|
ffnd |
|
| 34 |
9
|
zcnd |
|
| 35 |
11
|
zcnd |
|
| 36 |
34 35 12 18
|
divne0d |
|
| 37 |
|
ovex |
|
| 38 |
37
|
elsn |
|
| 39 |
38
|
necon3bbii |
|
| 40 |
36 39
|
sylibr |
|
| 41 |
4
|
ad2antrr |
|
| 42 |
|
simplr |
|
| 43 |
|
eqid |
|
| 44 |
1 3 43
|
zrhker |
|
| 45 |
44
|
biimpa |
|
| 46 |
41 42 45
|
syl2anc |
|
| 47 |
40 46
|
neleqtrrd |
|
| 48 |
|
elpreima |
|
| 49 |
48
|
baibd |
|
| 50 |
49
|
biimprd |
|
| 51 |
50
|
con3dimp |
|
| 52 |
|
fvex |
|
| 53 |
52
|
elsn |
|
| 54 |
53
|
necon3bbii |
|
| 55 |
51 54
|
sylib |
|
| 56 |
33 28 47 55
|
syl21anc |
|
| 57 |
|
eqid |
|
| 58 |
1 57 43
|
drngunit |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
32 56 59
|
mpbir2and |
|
| 61 |
31 11
|
ffvelcdmd |
|
| 62 |
|
ovex |
|
| 63 |
62
|
elsn |
|
| 64 |
63
|
necon3bbii |
|
| 65 |
18 64
|
sylibr |
|
| 66 |
65 46
|
neleqtrrd |
|
| 67 |
|
elpreima |
|
| 68 |
67
|
baibd |
|
| 69 |
68
|
biimprd |
|
| 70 |
69
|
con3dimp |
|
| 71 |
|
fvex |
|
| 72 |
71
|
elsn |
|
| 73 |
72
|
necon3bbii |
|
| 74 |
70 73
|
sylib |
|
| 75 |
33 11 66 74
|
syl21anc |
|
| 76 |
1 57 43
|
drngunit |
|
| 77 |
76
|
ad2antrr |
|
| 78 |
61 75 77
|
mpbir2and |
|
| 79 |
|
zringmulr |
|
| 80 |
57 29 2 79
|
rhmdvd |
|
| 81 |
7 24 28 11 60 78 80
|
syl132anc |
|
| 82 |
|
divnumden |
|
| 83 |
8 82
|
sylan |
|
| 84 |
83
|
simpld |
|
| 85 |
84
|
eqcomd |
|
| 86 |
85
|
fveq2d |
|
| 87 |
83
|
simprd |
|
| 88 |
87
|
eqcomd |
|
| 89 |
88
|
fveq2d |
|
| 90 |
86 89
|
oveq12d |
|
| 91 |
24
|
adantr |
|
| 92 |
91
|
zcnd |
|
| 93 |
92
|
mulm1d |
|
| 94 |
|
neg1cn |
|
| 95 |
94
|
a1i |
|
| 96 |
95 92
|
mulcomd |
|
| 97 |
93 96
|
eqtr3d |
|
| 98 |
97
|
fveq2d |
|
| 99 |
28
|
adantr |
|
| 100 |
99
|
zcnd |
|
| 101 |
100
|
mulm1d |
|
| 102 |
95 100
|
mulcomd |
|
| 103 |
101 102
|
eqtr3d |
|
| 104 |
103
|
fveq2d |
|
| 105 |
98 104
|
oveq12d |
|
| 106 |
8
|
adantr |
|
| 107 |
9
|
adantr |
|
| 108 |
|
simpr |
|
| 109 |
|
divnumden2 |
|
| 110 |
106 107 108 109
|
syl3anc |
|
| 111 |
110
|
simpld |
|
| 112 |
111
|
fveq2d |
|
| 113 |
110
|
simprd |
|
| 114 |
113
|
fveq2d |
|
| 115 |
112 114
|
oveq12d |
|
| 116 |
7
|
adantr |
|
| 117 |
|
1zzd |
|
| 118 |
117
|
znegcld |
|
| 119 |
60
|
adantr |
|
| 120 |
|
neg1z |
|
| 121 |
|
ax-1cn |
|
| 122 |
121
|
absnegi |
|
| 123 |
|
abs1 |
|
| 124 |
122 123
|
eqtri |
|
| 125 |
|
zringunit |
|
| 126 |
120 124 125
|
mpbir2an |
|
| 127 |
126
|
a1i |
|
| 128 |
|
elrhmunit |
|
| 129 |
116 127 128
|
syl2anc |
|
| 130 |
57 29 2 79
|
rhmdvd |
|
| 131 |
116 91 99 118 119 129 130
|
syl132anc |
|
| 132 |
105 115 131
|
3eqtr4rd |
|
| 133 |
|
simp3 |
|
| 134 |
133
|
neneqd |
|
| 135 |
|
simp2 |
|
| 136 |
|
elz |
|
| 137 |
135 136
|
sylib |
|
| 138 |
137
|
simprd |
|
| 139 |
|
3orass |
|
| 140 |
138 139
|
sylib |
|
| 141 |
|
orel1 |
|
| 142 |
134 140 141
|
sylc |
|
| 143 |
142
|
adantl |
|
| 144 |
90 132 143
|
mpjaodan |
|
| 145 |
8
|
zcnd |
|
| 146 |
145 35 18
|
divcan1d |
|
| 147 |
146
|
fveq2d |
|
| 148 |
34 35 18
|
divcan1d |
|
| 149 |
148
|
fveq2d |
|
| 150 |
147 149
|
oveq12d |
|
| 151 |
81 144 150
|
3eqtr3d |
|