Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | elrhmunit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | unitss | |
5 | simpr | |
|
6 | 4 5 | sselid | |
7 | rhmrcl1 | |
|
8 | eqid | |
|
9 | 2 8 | ringidcl | |
10 | 1 7 9 | 3syl | |
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 3 8 11 12 13 | isunit | |
15 | 5 14 | sylib | |
16 | 15 | simpld | |
17 | eqid | |
|
18 | 2 11 17 | rhmdvdsr | |
19 | 1 6 10 16 18 | syl31anc | |
20 | eqid | |
|
21 | 8 20 | rhm1 | |
22 | 21 | breq2d | |
23 | 22 | adantr | |
24 | 19 23 | mpbid | |
25 | rhmopp | |
|
26 | 25 | adantr | |
27 | 15 | simprd | |
28 | 12 2 | opprbas | |
29 | eqid | |
|
30 | 28 13 29 | rhmdvdsr | |
31 | 26 6 10 27 30 | syl31anc | |
32 | 21 | breq2d | |
33 | 32 | adantr | |
34 | 31 33 | mpbid | |
35 | eqid | |
|
36 | eqid | |
|
37 | 35 20 17 36 29 | isunit | |
38 | 24 34 37 | sylanbrc | |