Metamath Proof Explorer


Theorem elrhmunit

Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Assertion elrhmunit FRRingHomSAUnitRFAUnitS

Proof

Step Hyp Ref Expression
1 simpl FRRingHomSAUnitRFRRingHomS
2 eqid BaseR=BaseR
3 eqid UnitR=UnitR
4 2 3 unitss UnitRBaseR
5 simpr FRRingHomSAUnitRAUnitR
6 4 5 sselid FRRingHomSAUnitRABaseR
7 rhmrcl1 FRRingHomSRRing
8 eqid 1R=1R
9 2 8 ringidcl RRing1RBaseR
10 1 7 9 3syl FRRingHomSAUnitR1RBaseR
11 eqid rR=rR
12 eqid opprR=opprR
13 eqid ropprR=ropprR
14 3 8 11 12 13 isunit AUnitRArR1RAropprR1R
15 5 14 sylib FRRingHomSAUnitRArR1RAropprR1R
16 15 simpld FRRingHomSAUnitRArR1R
17 eqid rS=rS
18 2 11 17 rhmdvdsr FRRingHomSABaseR1RBaseRArR1RFArSF1R
19 1 6 10 16 18 syl31anc FRRingHomSAUnitRFArSF1R
20 eqid 1S=1S
21 8 20 rhm1 FRRingHomSF1R=1S
22 21 breq2d FRRingHomSFArSF1RFArS1S
23 22 adantr FRRingHomSAUnitRFArSF1RFArS1S
24 19 23 mpbid FRRingHomSAUnitRFArS1S
25 rhmopp FRRingHomSFopprRRingHomopprS
26 25 adantr FRRingHomSAUnitRFopprRRingHomopprS
27 15 simprd FRRingHomSAUnitRAropprR1R
28 12 2 opprbas BaseR=BaseopprR
29 eqid ropprS=ropprS
30 28 13 29 rhmdvdsr FopprRRingHomopprSABaseR1RBaseRAropprR1RFAropprSF1R
31 26 6 10 27 30 syl31anc FRRingHomSAUnitRFAropprSF1R
32 21 breq2d FRRingHomSFAropprSF1RFAropprS1S
33 32 adantr FRRingHomSAUnitRFAropprSF1RFAropprS1S
34 31 33 mpbid FRRingHomSAUnitRFAropprS1S
35 eqid UnitS=UnitS
36 eqid opprS=opprS
37 35 20 17 36 29 isunit FAUnitSFArS1SFAropprS1S
38 24 34 37 sylanbrc FRRingHomSAUnitRFAUnitS