Metamath Proof Explorer


Theorem rhmdvd

Description: A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses rhmdvd.u U = Unit S
rhmdvd.x X = Base R
rhmdvd.d × ˙ = / r S
rhmdvd.m · ˙ = R
Assertion rhmdvd F R RingHom S A X B X C X F B U F C U F A × ˙ F B = F A · ˙ C × ˙ F B · ˙ C

Proof

Step Hyp Ref Expression
1 rhmdvd.u U = Unit S
2 rhmdvd.x X = Base R
3 rhmdvd.d × ˙ = / r S
4 rhmdvd.m · ˙ = R
5 simp1 F R RingHom S A X B X C X F B U F C U F R RingHom S
6 simp21 F R RingHom S A X B X C X F B U F C U A X
7 simp23 F R RingHom S A X B X C X F B U F C U C X
8 eqid S = S
9 2 4 8 rhmmul F R RingHom S A X C X F A · ˙ C = F A S F C
10 5 6 7 9 syl3anc F R RingHom S A X B X C X F B U F C U F A · ˙ C = F A S F C
11 simp22 F R RingHom S A X B X C X F B U F C U B X
12 2 4 8 rhmmul F R RingHom S B X C X F B · ˙ C = F B S F C
13 5 11 7 12 syl3anc F R RingHom S A X B X C X F B U F C U F B · ˙ C = F B S F C
14 10 13 oveq12d F R RingHom S A X B X C X F B U F C U F A · ˙ C × ˙ F B · ˙ C = F A S F C × ˙ F B S F C
15 rhmrcl2 F R RingHom S S Ring
16 15 3ad2ant1 F R RingHom S A X B X C X F B U F C U S Ring
17 eqid Base S = Base S
18 2 17 rhmf F R RingHom S F : X Base S
19 18 3ad2ant1 F R RingHom S A X B X C X F B U F C U F : X Base S
20 19 6 ffvelrnd F R RingHom S A X B X C X F B U F C U F A Base S
21 simp3l F R RingHom S A X B X C X F B U F C U F B U
22 simp3r F R RingHom S A X B X C X F B U F C U F C U
23 17 1 3 8 dvrcan5 S Ring F A Base S F B U F C U F A S F C × ˙ F B S F C = F A × ˙ F B
24 16 20 21 22 23 syl13anc F R RingHom S A X B X C X F B U F C U F A S F C × ˙ F B S F C = F A × ˙ F B
25 14 24 eqtr2d F R RingHom S A X B X C X F B U F C U F A × ˙ F B = F A · ˙ C × ˙ F B · ˙ C