Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
4 |
|
elex |
|- ( R e. DivRing -> R e. _V ) |
5 |
4
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> R e. _V ) |
6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
7 |
2 6 3
|
qqhval |
|- ( R e. _V -> ( QQHom ` R ) = ran ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
8 |
5 7
|
syl |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) = ran ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
9 |
|
eqidd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ZZ = ZZ ) |
10 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
11 |
1 3 10
|
zrhunitpreima |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) |
12 |
|
mpoeq12 |
|- ( ( ZZ = ZZ /\ ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) -> ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) = ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
13 |
9 11 12
|
syl2anc |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) = ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
14 |
13
|
rneqd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ran ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) = ran ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
15 |
|
nfv |
|- F/ e ( R e. DivRing /\ ( chr ` R ) = 0 ) |
16 |
|
nfab1 |
|- F/_ e { e | E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. } |
17 |
|
nfcv |
|- F/_ e { <. q , s >. | ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) } |
18 |
|
simpr |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
19 |
|
zssq |
|- ZZ C_ QQ |
20 |
|
simplrl |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> x e. ZZ ) |
21 |
19 20
|
sselid |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> x e. QQ ) |
22 |
|
simplrr |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> y e. ( ZZ \ { 0 } ) ) |
23 |
22
|
eldifad |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> y e. ZZ ) |
24 |
19 23
|
sselid |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> y e. QQ ) |
25 |
22
|
eldifbd |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> -. y e. { 0 } ) |
26 |
|
velsn |
|- ( y e. { 0 } <-> y = 0 ) |
27 |
26
|
necon3bbii |
|- ( -. y e. { 0 } <-> y =/= 0 ) |
28 |
25 27
|
sylib |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> y =/= 0 ) |
29 |
|
qdivcl |
|- ( ( x e. QQ /\ y e. QQ /\ y =/= 0 ) -> ( x / y ) e. QQ ) |
30 |
21 24 28 29
|
syl3anc |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> ( x / y ) e. QQ ) |
31 |
|
simplll |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> R e. DivRing ) |
32 |
|
simpllr |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> ( chr ` R ) = 0 ) |
33 |
1 2 3
|
qqhval2lem |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ /\ y =/= 0 ) ) -> ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) = ( ( L ` x ) ./ ( L ` y ) ) ) |
34 |
33
|
eqcomd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ /\ y =/= 0 ) ) -> ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) |
35 |
31 32 20 23 28 34
|
syl23anc |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) |
36 |
|
ovex |
|- ( x / y ) e. _V |
37 |
|
ovex |
|- ( ( L ` x ) ./ ( L ` y ) ) e. _V |
38 |
|
opeq12 |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> <. q , s >. = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
39 |
38
|
eqeq2d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( e = <. q , s >. <-> e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
40 |
|
simpl |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> q = ( x / y ) ) |
41 |
40
|
eleq1d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( q e. QQ <-> ( x / y ) e. QQ ) ) |
42 |
|
simpr |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> s = ( ( L ` x ) ./ ( L ` y ) ) ) |
43 |
40
|
fveq2d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( numer ` q ) = ( numer ` ( x / y ) ) ) |
44 |
43
|
fveq2d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( L ` ( numer ` q ) ) = ( L ` ( numer ` ( x / y ) ) ) ) |
45 |
40
|
fveq2d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( denom ` q ) = ( denom ` ( x / y ) ) ) |
46 |
45
|
fveq2d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( L ` ( denom ` q ) ) = ( L ` ( denom ` ( x / y ) ) ) ) |
47 |
44 46
|
oveq12d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) |
48 |
42 47
|
eqeq12d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) <-> ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) ) |
49 |
41 48
|
anbi12d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) <-> ( ( x / y ) e. QQ /\ ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) ) ) |
50 |
39 49
|
anbi12d |
|- ( ( q = ( x / y ) /\ s = ( ( L ` x ) ./ ( L ` y ) ) ) -> ( ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) <-> ( e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. /\ ( ( x / y ) e. QQ /\ ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) ) ) ) |
51 |
36 37 50
|
spc2ev |
|- ( ( e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. /\ ( ( x / y ) e. QQ /\ ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` ( x / y ) ) ) ./ ( L ` ( denom ` ( x / y ) ) ) ) ) ) -> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) |
52 |
18 30 35 51
|
syl12anc |
|- ( ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) /\ e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) |
53 |
52
|
ex |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( x e. ZZ /\ y e. ( ZZ \ { 0 } ) ) ) -> ( e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. -> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) ) |
54 |
53
|
rexlimdvva |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. -> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) ) |
55 |
54
|
imp |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) -> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) |
56 |
|
19.42vv |
|- ( E. q E. s ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) <-> ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) ) |
57 |
|
simprrl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> q e. QQ ) |
58 |
|
qnumcl |
|- ( q e. QQ -> ( numer ` q ) e. ZZ ) |
59 |
57 58
|
syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> ( numer ` q ) e. ZZ ) |
60 |
|
qdencl |
|- ( q e. QQ -> ( denom ` q ) e. NN ) |
61 |
57 60
|
syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> ( denom ` q ) e. NN ) |
62 |
61
|
nnzd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> ( denom ` q ) e. ZZ ) |
63 |
|
nnne0 |
|- ( ( denom ` q ) e. NN -> ( denom ` q ) =/= 0 ) |
64 |
|
nelsn |
|- ( ( denom ` q ) =/= 0 -> -. ( denom ` q ) e. { 0 } ) |
65 |
61 63 64
|
3syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> -. ( denom ` q ) e. { 0 } ) |
66 |
62 65
|
eldifd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> ( denom ` q ) e. ( ZZ \ { 0 } ) ) |
67 |
|
simprl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> e = <. q , s >. ) |
68 |
|
qeqnumdivden |
|- ( q e. QQ -> q = ( ( numer ` q ) / ( denom ` q ) ) ) |
69 |
57 68
|
syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> q = ( ( numer ` q ) / ( denom ` q ) ) ) |
70 |
|
simprrr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) |
71 |
69 70
|
opeq12d |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> <. q , s >. = <. ( ( numer ` q ) / ( denom ` q ) ) , ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) >. ) |
72 |
67 71
|
eqtrd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> e = <. ( ( numer ` q ) / ( denom ` q ) ) , ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) >. ) |
73 |
|
oveq1 |
|- ( x = ( numer ` q ) -> ( x / y ) = ( ( numer ` q ) / y ) ) |
74 |
|
fveq2 |
|- ( x = ( numer ` q ) -> ( L ` x ) = ( L ` ( numer ` q ) ) ) |
75 |
74
|
oveq1d |
|- ( x = ( numer ` q ) -> ( ( L ` x ) ./ ( L ` y ) ) = ( ( L ` ( numer ` q ) ) ./ ( L ` y ) ) ) |
76 |
73 75
|
opeq12d |
|- ( x = ( numer ` q ) -> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. = <. ( ( numer ` q ) / y ) , ( ( L ` ( numer ` q ) ) ./ ( L ` y ) ) >. ) |
77 |
76
|
eqeq2d |
|- ( x = ( numer ` q ) -> ( e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. <-> e = <. ( ( numer ` q ) / y ) , ( ( L ` ( numer ` q ) ) ./ ( L ` y ) ) >. ) ) |
78 |
|
oveq2 |
|- ( y = ( denom ` q ) -> ( ( numer ` q ) / y ) = ( ( numer ` q ) / ( denom ` q ) ) ) |
79 |
|
fveq2 |
|- ( y = ( denom ` q ) -> ( L ` y ) = ( L ` ( denom ` q ) ) ) |
80 |
79
|
oveq2d |
|- ( y = ( denom ` q ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` y ) ) = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) |
81 |
78 80
|
opeq12d |
|- ( y = ( denom ` q ) -> <. ( ( numer ` q ) / y ) , ( ( L ` ( numer ` q ) ) ./ ( L ` y ) ) >. = <. ( ( numer ` q ) / ( denom ` q ) ) , ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) >. ) |
82 |
81
|
eqeq2d |
|- ( y = ( denom ` q ) -> ( e = <. ( ( numer ` q ) / y ) , ( ( L ` ( numer ` q ) ) ./ ( L ` y ) ) >. <-> e = <. ( ( numer ` q ) / ( denom ` q ) ) , ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) >. ) ) |
83 |
77 82
|
rspc2ev |
|- ( ( ( numer ` q ) e. ZZ /\ ( denom ` q ) e. ( ZZ \ { 0 } ) /\ e = <. ( ( numer ` q ) / ( denom ` q ) ) , ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) >. ) -> E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
84 |
59 66 72 83
|
syl3anc |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
85 |
84
|
exlimivv |
|- ( E. q E. s ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
86 |
56 85
|
sylbir |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) -> E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
87 |
55 86
|
impbida |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. <-> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) ) |
88 |
|
abid |
|- ( e e. { e | E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. } <-> E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
89 |
|
elopab |
|- ( e e. { <. q , s >. | ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) } <-> E. q E. s ( e = <. q , s >. /\ ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) ) |
90 |
87 88 89
|
3bitr4g |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( e e. { e | E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. } <-> e e. { <. q , s >. | ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) } ) ) |
91 |
15 16 17 90
|
eqrd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> { e | E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. } = { <. q , s >. | ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) } ) |
92 |
|
eqid |
|- ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) = ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
93 |
92
|
rnmpo |
|- ran ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) = { e | E. x e. ZZ E. y e. ( ZZ \ { 0 } ) e = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. } |
94 |
|
df-mpt |
|- ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) = { <. q , s >. | ( q e. QQ /\ s = ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) } |
95 |
91 93 94
|
3eqtr4g |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ran ( x e. ZZ , y e. ( ZZ \ { 0 } ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |
96 |
8 14 95
|
3eqtrd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |