Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval.1 |
|- ./ = ( /r ` R ) |
2 |
|
qqhval.2 |
|- .1. = ( 1r ` R ) |
3 |
|
qqhval.3 |
|- L = ( ZRHom ` R ) |
4 |
|
eqidd |
|- ( f = R -> ZZ = ZZ ) |
5 |
|
fveq2 |
|- ( f = R -> ( ZRHom ` f ) = ( ZRHom ` R ) ) |
6 |
5 3
|
eqtr4di |
|- ( f = R -> ( ZRHom ` f ) = L ) |
7 |
6
|
cnveqd |
|- ( f = R -> `' ( ZRHom ` f ) = `' L ) |
8 |
|
fveq2 |
|- ( f = R -> ( Unit ` f ) = ( Unit ` R ) ) |
9 |
7 8
|
imaeq12d |
|- ( f = R -> ( `' ( ZRHom ` f ) " ( Unit ` f ) ) = ( `' L " ( Unit ` R ) ) ) |
10 |
|
fveq2 |
|- ( f = R -> ( /r ` f ) = ( /r ` R ) ) |
11 |
10 1
|
eqtr4di |
|- ( f = R -> ( /r ` f ) = ./ ) |
12 |
6
|
fveq1d |
|- ( f = R -> ( ( ZRHom ` f ) ` x ) = ( L ` x ) ) |
13 |
6
|
fveq1d |
|- ( f = R -> ( ( ZRHom ` f ) ` y ) = ( L ` y ) ) |
14 |
11 12 13
|
oveq123d |
|- ( f = R -> ( ( ( ZRHom ` f ) ` x ) ( /r ` f ) ( ( ZRHom ` f ) ` y ) ) = ( ( L ` x ) ./ ( L ` y ) ) ) |
15 |
14
|
opeq2d |
|- ( f = R -> <. ( x / y ) , ( ( ( ZRHom ` f ) ` x ) ( /r ` f ) ( ( ZRHom ` f ) ` y ) ) >. = <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) |
16 |
4 9 15
|
mpoeq123dv |
|- ( f = R -> ( x e. ZZ , y e. ( `' ( ZRHom ` f ) " ( Unit ` f ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` f ) ` x ) ( /r ` f ) ( ( ZRHom ` f ) ` y ) ) >. ) = ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
17 |
16
|
rneqd |
|- ( f = R -> ran ( x e. ZZ , y e. ( `' ( ZRHom ` f ) " ( Unit ` f ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` f ) ` x ) ( /r ` f ) ( ( ZRHom ` f ) ` y ) ) >. ) = ran ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |
18 |
|
df-qqh |
|- QQHom = ( f e. _V |-> ran ( x e. ZZ , y e. ( `' ( ZRHom ` f ) " ( Unit ` f ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` f ) ` x ) ( /r ` f ) ( ( ZRHom ` f ) ` y ) ) >. ) ) |
19 |
|
zex |
|- ZZ e. _V |
20 |
3
|
fvexi |
|- L e. _V |
21 |
20
|
cnvex |
|- `' L e. _V |
22 |
|
imaexg |
|- ( `' L e. _V -> ( `' L " ( Unit ` R ) ) e. _V ) |
23 |
21 22
|
ax-mp |
|- ( `' L " ( Unit ` R ) ) e. _V |
24 |
19 23
|
mpoex |
|- ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) e. _V |
25 |
24
|
rnex |
|- ran ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) e. _V |
26 |
17 18 25
|
fvmpt |
|- ( R e. _V -> ( QQHom ` R ) = ran ( x e. ZZ , y e. ( `' L " ( Unit ` R ) ) |-> <. ( x / y ) , ( ( L ` x ) ./ ( L ` y ) ) >. ) ) |