Metamath Proof Explorer


Theorem zrhf1ker

Description: The kernel of the homomorphism from the integers to a ring, if it is injective. (Contributed by Thierry Arnoux, 26-Oct-2017) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses zrhker.0
|- B = ( Base ` R )
zrhker.1
|- L = ( ZRHom ` R )
zrhker.2
|- .0. = ( 0g ` R )
Assertion zrhf1ker
|- ( R e. Ring -> ( L : ZZ -1-1-> B <-> ( `' L " { .0. } ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 zrhker.0
 |-  B = ( Base ` R )
2 zrhker.1
 |-  L = ( ZRHom ` R )
3 zrhker.2
 |-  .0. = ( 0g ` R )
4 2 zrhrhm
 |-  ( R e. Ring -> L e. ( ZZring RingHom R ) )
5 rhmghm
 |-  ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) )
6 zringbas
 |-  ZZ = ( Base ` ZZring )
7 zring0
 |-  0 = ( 0g ` ZZring )
8 6 1 7 3 kerf1ghm
 |-  ( L e. ( ZZring GrpHom R ) -> ( L : ZZ -1-1-> B <-> ( `' L " { .0. } ) = { 0 } ) )
9 4 5 8 3syl
 |-  ( R e. Ring -> ( L : ZZ -1-1-> B <-> ( `' L " { .0. } ) = { 0 } ) )