Metamath Proof Explorer


Theorem zrhf1ker

Description: The kernel of the homomorphism from the integers to a ring, if it is injective. (Contributed by Thierry Arnoux, 26-Oct-2017) (Revised by Thierry Arnoux, 23-May-2023)

Ref Expression
Hypotheses zrhker.0 𝐵 = ( Base ‘ 𝑅 )
zrhker.1 𝐿 = ( ℤRHom ‘ 𝑅 )
zrhker.2 0 = ( 0g𝑅 )
Assertion zrhf1ker ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1𝐵 ↔ ( 𝐿 “ { 0 } ) = { 0 } ) )

Proof

Step Hyp Ref Expression
1 zrhker.0 𝐵 = ( Base ‘ 𝑅 )
2 zrhker.1 𝐿 = ( ℤRHom ‘ 𝑅 )
3 zrhker.2 0 = ( 0g𝑅 )
4 2 zrhrhm ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) )
5 rhmghm ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) )
6 zringbas ℤ = ( Base ‘ ℤring )
7 zring0 0 = ( 0g ‘ ℤring )
8 6 1 7 3 kerf1ghm ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) → ( 𝐿 : ℤ –1-1𝐵 ↔ ( 𝐿 “ { 0 } ) = { 0 } ) )
9 4 5 8 3syl ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1𝐵 ↔ ( 𝐿 “ { 0 } ) = { 0 } ) )