Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology and algebraic structures
Canonical embedding of the field of the rational numbers into a division ring
zrhf1ker
Metamath Proof Explorer
Description: The kernel of the homomorphism from the integers to a ring, if it is
injective. (Contributed by Thierry Arnoux , 26-Oct-2017) (Revised by Thierry Arnoux , 23-May-2023)
Ref
Expression
Hypotheses
zrhker.0
⊢ 𝐵 = ( Base ‘ 𝑅 )
zrhker.1
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 )
zrhker.2
⊢ 0 = ( 0g ‘ 𝑅 )
Assertion
zrhf1ker
⊢ ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1 → 𝐵 ↔ ( ◡ 𝐿 “ { 0 } ) = { 0 } ) )
Proof
Step
Hyp
Ref
Expression
1
zrhker.0
⊢ 𝐵 = ( Base ‘ 𝑅 )
2
zrhker.1
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 )
3
zrhker.2
⊢ 0 = ( 0g ‘ 𝑅 )
4
2
zrhrhm
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) )
5
rhmghm
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) )
6
zringbas
⊢ ℤ = ( Base ‘ ℤring )
7
zring0
⊢ 0 = ( 0g ‘ ℤring )
8
6 1 7 3
kerf1ghm
⊢ ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) → ( 𝐿 : ℤ –1-1 → 𝐵 ↔ ( ◡ 𝐿 “ { 0 } ) = { 0 } ) )
9
4 5 8
3syl
⊢ ( 𝑅 ∈ Ring → ( 𝐿 : ℤ –1-1 → 𝐵 ↔ ( ◡ 𝐿 “ { 0 } ) = { 0 } ) )