| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqqh |
|- QQHom |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cz |
|- ZZ |
| 5 |
|
vy |
|- y |
| 6 |
|
czrh |
|- ZRHom |
| 7 |
1
|
cv |
|- r |
| 8 |
7 6
|
cfv |
|- ( ZRHom ` r ) |
| 9 |
8
|
ccnv |
|- `' ( ZRHom ` r ) |
| 10 |
|
cui |
|- Unit |
| 11 |
7 10
|
cfv |
|- ( Unit ` r ) |
| 12 |
9 11
|
cima |
|- ( `' ( ZRHom ` r ) " ( Unit ` r ) ) |
| 13 |
3
|
cv |
|- x |
| 14 |
|
cdiv |
|- / |
| 15 |
5
|
cv |
|- y |
| 16 |
13 15 14
|
co |
|- ( x / y ) |
| 17 |
13 8
|
cfv |
|- ( ( ZRHom ` r ) ` x ) |
| 18 |
|
cdvr |
|- /r |
| 19 |
7 18
|
cfv |
|- ( /r ` r ) |
| 20 |
15 8
|
cfv |
|- ( ( ZRHom ` r ) ` y ) |
| 21 |
17 20 19
|
co |
|- ( ( ( ZRHom ` r ) ` x ) ( /r ` r ) ( ( ZRHom ` r ) ` y ) ) |
| 22 |
16 21
|
cop |
|- <. ( x / y ) , ( ( ( ZRHom ` r ) ` x ) ( /r ` r ) ( ( ZRHom ` r ) ` y ) ) >. |
| 23 |
3 5 4 12 22
|
cmpo |
|- ( x e. ZZ , y e. ( `' ( ZRHom ` r ) " ( Unit ` r ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` r ) ` x ) ( /r ` r ) ( ( ZRHom ` r ) ` y ) ) >. ) |
| 24 |
23
|
crn |
|- ran ( x e. ZZ , y e. ( `' ( ZRHom ` r ) " ( Unit ` r ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` r ) ` x ) ( /r ` r ) ( ( ZRHom ` r ) ` y ) ) >. ) |
| 25 |
1 2 24
|
cmpt |
|- ( r e. _V |-> ran ( x e. ZZ , y e. ( `' ( ZRHom ` r ) " ( Unit ` r ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` r ) ` x ) ( /r ` r ) ( ( ZRHom ` r ) ` y ) ) >. ) ) |
| 26 |
0 25
|
wceq |
|- QQHom = ( r e. _V |-> ran ( x e. ZZ , y e. ( `' ( ZRHom ` r ) " ( Unit ` r ) ) |-> <. ( x / y ) , ( ( ( ZRHom ` r ) ` x ) ( /r ` r ) ( ( ZRHom ` r ) ` y ) ) >. ) ) |