Step |
Hyp |
Ref |
Expression |
0 |
|
cqqh |
⊢ ℚHom |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cz |
⊢ ℤ |
5 |
|
vy |
⊢ 𝑦 |
6 |
|
czrh |
⊢ ℤRHom |
7 |
1
|
cv |
⊢ 𝑟 |
8 |
7 6
|
cfv |
⊢ ( ℤRHom ‘ 𝑟 ) |
9 |
8
|
ccnv |
⊢ ◡ ( ℤRHom ‘ 𝑟 ) |
10 |
|
cui |
⊢ Unit |
11 |
7 10
|
cfv |
⊢ ( Unit ‘ 𝑟 ) |
12 |
9 11
|
cima |
⊢ ( ◡ ( ℤRHom ‘ 𝑟 ) “ ( Unit ‘ 𝑟 ) ) |
13 |
3
|
cv |
⊢ 𝑥 |
14 |
|
cdiv |
⊢ / |
15 |
5
|
cv |
⊢ 𝑦 |
16 |
13 15 14
|
co |
⊢ ( 𝑥 / 𝑦 ) |
17 |
13 8
|
cfv |
⊢ ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) |
18 |
|
cdvr |
⊢ /r |
19 |
7 18
|
cfv |
⊢ ( /r ‘ 𝑟 ) |
20 |
15 8
|
cfv |
⊢ ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) |
21 |
17 20 19
|
co |
⊢ ( ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) ( /r ‘ 𝑟 ) ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) ) |
22 |
16 21
|
cop |
⊢ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) ( /r ‘ 𝑟 ) ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) ) ⟩ |
23 |
3 5 4 12 22
|
cmpo |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑟 ) “ ( Unit ‘ 𝑟 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) ( /r ‘ 𝑟 ) ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) ) ⟩ ) |
24 |
23
|
crn |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑟 ) “ ( Unit ‘ 𝑟 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) ( /r ‘ 𝑟 ) ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) ) ⟩ ) |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑟 ) “ ( Unit ‘ 𝑟 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) ( /r ‘ 𝑟 ) ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) ) ⟩ ) ) |
26 |
0 25
|
wceq |
⊢ ℚHom = ( 𝑟 ∈ V ↦ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑟 ) “ ( Unit ‘ 𝑟 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑥 ) ( /r ‘ 𝑟 ) ( ( ℤRHom ‘ 𝑟 ) ‘ 𝑦 ) ) ⟩ ) ) |